证明四边形是菱形判定方法_第1页
证明四边形是菱形判定方法_第2页
证明四边形是菱形判定方法_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

证明四边形是菱形判定方法中点四边形:依次连接四边形各边中点所得的四边形称为中点四边形。不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。菱形的中点四边形是矩形(对角线互相垂直的四边形的中点四边形定为菱形,对角线相等的四边形的中点四边形定为矩形。)菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。菱形的面积计算:1.对角线乘积的一半。(只要是对角线互相垂直的四边形都可用);由把菱形分解成2个三角形,化简得出;2.底乘高;3.设菱形的边长为a,一个夹角为θ,则面积公式是:S=a^2·sinθ。1、在同一平面内,一组邻边相等的平行四边形是菱形。2、在同一平面内,对角线互相垂直的平行四边形是菱形。3、在同一平面内,四条边均相等的四边形是菱形。4、在同一平面内,对角线互相垂直平分的四边形是菱形。5、在同一平面内,两条对角线分别平分每组对角的四边形是菱形。6、在同一平面内,有一对角线平分一个内角的平行四边形是菱形。菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。菱形的一条对角线必须与x轴平行,另一条对角线与y轴平行。不满足此条件的几何学菱形在计算机图形学上被视作一般四边形。证明四边形是菱形判定定理1、在同一平面内,一组邻边相等的平行四边形是菱形;2、在同一平面内,四条边均相等的四边形是菱形;3、在同一平面内,对角线互相垂直平分的四边形;4、在同一平面内、两条对角线分别平分每组对角的四边形;5、在同一平面内,有一对角线平分一个内角的平行四边形;菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定定理。证明四边形是菱形判定性质1、菱形具有平行四边形的一切性质;2、菱形的四条边都相等;3、菱形的对角线互相垂直平分且平分每一组对角;4、菱形是轴对称图形,对称轴有2条,即两条对角线所在直线;5、菱形是中心对称图形。面积公式:设一个菱形的面积为S,边长为a,高为b,两对角线分别为c和d,一个最小的内角为∠θ,则有:1、S=ab(菱形和其他平行四边形的面积等于底乘以高);2、S=cd÷2(菱形和其他对角线互相垂直的四边形的面积等于两对角线乘积的一半);3、S=a^2·sinθ。四条边相等的四边形是菱形例子证明:∵AB=CD,BC=AD,∴四边形ABCD是平dao行四边形(两组对边分别相等的四边形是平行四边形).又∵AB=BC,∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形).2、对角线互相垂直的平行四边形是菱形。证明:∵四边形ABCD是平行四边形,∴OA=OC(平行四边形的对角线相互平分)。又∵AC⊥BD,∴BD所在直线是线段AC的垂直平分线,∴AB=BC,∴四边形ABCD是菱形(有一组邻边相等的平行四边形是菱形)。3、有一组邻边相等的平行四边形是菱形。RF是三角形ABD的中位线,于是RF‖AD,同理:GH‖AD,RH‖BE,FG‖BE,所以有RF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论