版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省阜宁县九年级数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.在Rt△ABC中,∠C=90°,若BC=3,AC=4,则sinB的值为()A. B. C. D.2.下列成语表示随机事件的是()A.水中捞月B.水滴石穿C.瓮中捉鳖D.守株待兔3.下列事件属于必然事件的是()A.篮球队员在罚球线上投篮一次,未投中 B.掷一次骰子,向上一面的点数是6C.任意画一个五边形,其内角和是540° D.经过有交通信号灯的路口,遇到红灯4.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x,则下列方程中,正确的是()A.600(1+x)=950 B.600(1+2x)=950C.600(1+x)2=950 D.950(1﹣x)2=6005.在△ABC中,∠C=Rt∠,AC=6,BC=8,则cosB的值是()A. B. C. D.6.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=65°,∠ABC=68°,则∠A的度数为().A.112° B.68° C.65° D.52°7.一元二次方程的二次项系数、一次项系数分别是A.3, B.3,1 C.,1 D.3,68.如图,点P(x,y)(x>0)是反比例函数y=(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大 B.S的值减小C.S的值先增大,后减小 D.S的值不变9.将抛物线y=x2﹣2向右平移3个单位长度,再向上平移2个单位长度,则所得抛物线的解析式为()A.y=(x+3)2 B.y=(x﹣3)2 C.y=(x+2)2+1 D.y=(x﹣2)2+110.如图,双曲线的一个分支为()A.① B.② C.③ D.④11.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.12.若点在反比例函数的图象上,且,则下列各式正确的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在边长为1的正方形网格中,.线段与线段存在一种变换关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为__________.14.若圆锥的母线长为4cm,其侧面积,则圆锥底面半径为cm.15.如图,在四边形ABCD中,∠ABC=90°,对角线AC、BD交于点O,AO=CO,CD⊥BD,如果CD=3,BC=5,那么AB=_____.16.如图在中,,,以点为圆心,的长为半径作弧,交于点,为的中点,以点为圆心,长为半径作弧,交于点,若,则阴影部分的面积为________.17.在中,,,,圆在内自由移动.若的半径为1,则圆心在内所能到达的区域的面积为______.18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题(共78分)19.(8分)某商场将进货价为30元的台灯以40元的价格售出,平均每月能售出600个,经调查表明,这种台灯的售价每上涨1元,其销量就减少10个,市场规定此台灯售价不得超过60元.(1)为了实现销售这种台灯平均每月10000元的销售利润,售价应定为多少元?(2)若商场要获得最大利润,则应上涨多少元?20.(8分)如图,直线y=1x+1与y轴交于A点,与反比例函数y=(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=1.(1)求H点的坐标及k的值;(1)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P点坐标;(3)点N(a,1)是反比例函数y=(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.21.(8分)已知关于x的一元二次方程x2+(2k+1)x+k2=0有实数根.(1)求k的取值范围.(2)设方程的两个实数根分别为x1、x2,若2x1x2﹣x1﹣x2=1,求k的值.22.(10分)如图,内接于,是的直径,是上一点,弦交于点,弦于点,连接,,且.(1)求证:;(2)若,,求的长.23.(10分)如图,在平面直角坐标系中,点从点运动到点停止,连接,以长为直径作.(1)若,求的半径;(2)当与相切时,求的面积;(3)连接,在整个运动过程中,的面积是否为定值,如果是,请直接写出面积的定值,如果不是,请说明理由.24.(10分)解下列方程:(1)x2﹣6x+9=0;(2)x2﹣4x=12;(3)3x(2x﹣5)=4x﹣1.25.(12分)已知关于x的不等式组恰有两个整数解,求实数a的取值范围.26.计算:(1);(2)先化简,再求值.,其中a=2020;
参考答案一、选择题(每题4分,共48分)1、A【分析】根据三角函数的定义解决问题即可.【题目详解】解:如图,在Rt△ABC中,∵∠C=90°,BC=3,AC=4,∴AB=,∴sinB==故选:A.【题目点拨】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.2、D【解题分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【题目详解】解:水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、瓮中捉鳖是必然事件,故选项C不符合题意;D、守株待兔是随机事件,故选项D符合题意;故选:D.【题目点拨】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、C【分析】必然事件就是一定发生的事件,根据定义即可判断.【题目详解】解:A、篮球队员在罚球线上投篮一次,未投中,是随机事件.B、掷一次骰子,向上一面的点数是6,是随机事件.C、任意画一个五边形,其内角和是540°,是必然事件.D、经过有交通信号灯的路口,遇到红灯,是随机事件.故选:C.【题目点拨】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、C【分析】设快递量平均每年增长率为,根据我国2018年及2020年的快递业务量,即可得出关于的一元二次方程,此题得解.【题目详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=1.故选:C.【题目点拨】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5、C【分析】利用勾股定理求出AB,根据余弦函数的定义求解即可.【题目详解】解:如图,在中,,,,,故选:C.【题目点拨】本题考查解直角三角形,解题的关键是熟练掌握基本知识,属于中考常考题型.6、C【分析】由四边形ABCD内接于⊙O,可得∠BAD+∠BCD=180°,又由邻补角的定义,可证得∠BAD=∠DCE.继而求得答案.【题目详解】解:∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BCD+∠DCE=180°,∴∠A=∠DCE=65°.故选:C.【题目点拨】此题考查了圆的内接四边形的性质.注意掌握圆内接四边形的对角互补是解此题的关键.7、A【分析】根据一元二次方程的定义解答.【题目详解】3x2−6x+1=0的二次项系数是3,一次项系数是−6,常数项是1.故答案选A.【题目点拨】本题考查的知识点是一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的一般形式.8、D【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=|k|,所以S=2k,为定值.【题目详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值为定值.故选D.【题目点拨】本题考查了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.9、B【分析】利用二次函数图象的平移规律,左加右减,上加下减,进而得出答案.【题目详解】将抛物线y=x2﹣2向右平移3个单位长度,得到平移后解析式为:y=(x﹣3)2﹣2,∴再向上平移2个单位长度所得的抛物线解析式为:y=(x﹣3)2﹣2+2,即y=(x﹣3)2;故选:B.【题目点拨】考核知识点:二次函数图象.理解性质是关键.10、D【解题分析】∵在中,k=8>0,∴它的两个分支分别位于第一、三象限,排除①②;又当=2时,=4,排除③;所以应该是④.故选D.11、B【分析】根据轴对称图形与中心对称图形的概念判定即可.【题目详解】解:A、不是轴对称图形,也是中心对称图形B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故答案为B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念,掌握轴对称和中心对称概念的区别是解答本题的关键.12、C【分析】先判断反比例函数所在象限,再根据反比例函数的性质解答即可.【题目详解】解:反比例函数为,函数图象在第二、四象限,在每个象限内,随着的增大而增大,又,,,.故选C.【题目点拨】本题考查了反比例函数的图象和性质,属于基本题型,熟练掌握反比例函数的性质是解答的关键.二、填空题(每题4分,共24分)13、或【分析】根据旋转后的对应关系分类讨论,分别画出对应的图形,作出对应点连线的垂直平分线即可找到旋转中心,最后根据点A的坐标即可求结论.【题目详解】解:①若旋转后点A的对应点是点C,点B的对称点是点D,连接AC和BD,分别作AC和BD的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OC,OB=OD,故点O即为所求,∵,∴由图可知:点O的坐标为(5,2);②若旋转后点A的对应点是点D,点B的对称点是点C,连接AD和BC,分别作AD和BC的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OD,OB=OC,故点O即为所求,∵,∴由图可知:点O的坐标为综上:这个旋转中心的坐标为或故答案为:或.【题目点拨】此题考查的是根据旋转图形找旋转中心,掌握垂直平分线的性质及作法是解决此题的关键.14、3【解题分析】∵圆锥的母线长是5cm,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:l==6π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r==3cm,15、【分析】过点A作AE⊥BD,由AAS得△AOE≌△COD,从而得CD=AE=3,由勾股定理得DB=4,易证△ABE∽△BCD,得,进而即可求解.【题目详解】过点A作AE⊥BD,∵CD⊥BD,AE⊥BD,∴∠CDB=∠AED=90°,CO=AO,∠COD=∠AOE,∴△AOE≌△COD(AAS)∴CD=AE=3,∵∠CDB=90°,BC=5,CD=3,∴DB==4,∵∠ABC=∠AEB=90°,∴∠ABE+∠EAB=90°,∠CBD+∠ABE=90°,∴∠EAB=∠CBD,又∵∠CDB=∠AEB=90°,∴△ABE∽△BCD,∴,∴,∴AB=.故答案为:.【题目点拨】本题主要考查相似三角形的判定和性质定理,全等三角形的判定和性质以及勾股定理,添加辅助线构造全等三角形,是解题的关键.16、【分析】过D作DM⊥AB,根据计算即得.【题目详解】过D作DM⊥AB,如下图:∵为的中点,以点为圆心,长为半径作弧,交于点∴AD=ED=CD∴,∵∴∴∵在中,∴∵∴∴∴,,∴,,∴故答案为:【题目点拨】本题考查了求解不规则图形的面积,解题关键是通过容斥原理将不规则图形转化为规则图形.17、24【分析】根据题意做图,圆心在内所能到达的区域为△EFG,先求出AB的长,延长BE交AC于H点,作HM⊥AB于M,根据圆的性质可知BH平分∠ABC,故CH=HM,设CH=x=HM,根据Rt△AMH中利用勾股定理求出x的值,作EK⊥BC于K点,利用△BEK∽△BHC,求出BK的长,即可求出EF的长,再根据△EFG∽△BCA求出FG,即可求出△EFG的面积.【题目详解】如图,由题意点O所能到达的区域是△EFG,连接BE,延长BE交AC于H点,作HM⊥AB于M,EK⊥BC于K,作FJ⊥BC于J.∵,,,∴AB=根据圆的性质可知BH平分∠ABC∴故CH=HM,设CH=x=HM,则AH=12-x,BM=BC=9,∴AM=15-9=6在Rt△AMH中,AH2=HM2+AM2即AH2=HM2+AM2(12-x)2=x2+62解得x=4.5∵EK∥AC,∴△BEK∽△BHC,∴,即∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG∥AB,EF∥AC,FG∥BC,∴∠EGF=∠ABC,∠FEG=∠CAB,∴△EFG∽△ACB,故,即解得FG=8∴圆心在内所能到达的区域的面积为FG×EF=×8×6=24,故答案为24.【题目点拨】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.18、【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【题目详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,∴积为大于-4小于2的概率为=,故答案为.【题目点拨】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共78分)19、(1)50元;(2)涨20元.【分析】(1)设这种台灯上涨了x元,台灯将少售出10x,那么利润为(40+x-30)(600-10x)=10000,解方程即可;
(2)根据销售利润=每个台灯的利润×销售量,每个台灯的利润=售价-进价,列出二次函数解析式,根据二次函数的性质即可求最大利润.【题目详解】解:(1)设这种台灯上涨了元,依题意得:,化简得:,解得:(不合题意,舍去)或,售价:(元)答:这种台灯的售价应定为50元.(2)设台灯上涨了元,利润为元,依题意:∴对称轴,在对称轴的左侧随着的增大而增大,∵单价在60元以内,∴∴当时,元,答:商场要获得最大利润,则应上涨20元.【题目点拨】此题考查一元二次方程和二次函数的实际运用---销售利润问题,能够由实际问题转化为一元二次方程或二次函数的问题是解题关键,要注意的是二次函数的最值要考虑自变量取值范围,不一定在顶点处取得,这点很容易出错.20、(1)k=4;(1)点P的坐标为(0,6)或(0,1+),或(0,1﹣);(2)m=7或2.【解题分析】(1)先求出OA=1,结合tan∠AHO=1可得OH的长,即可得知点M的横坐标,代入直线解析式可得点M坐标,代入反比例解析式可得k的值;
(1)分AM=AP和AM=PM两种情况分别求解可得;
(2)先求出点N(4,1),延长MN交x轴于点C,待定系数法求出直线MN解析式为y=-x+3.据此求得OC=3,再由S△MNQ=S△MQC-S△NQC=2知QC=1,再进一步求解可得.【题目详解】(1)由y=1x+1可知A(0,1),即OA=1,∵tan∠AHO=1,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=1x+1上,∴点M的纵坐标为4,即M(1,4),∵点M在y=上,∴k=1×4=4;(1)①当AM=AP时,∵A(0,1),M(1,4),∴AM=,则AP=AM=,∴此时点P的坐标为(0,1﹣)或(0,1+);②若AM=PM时,设P(0,y),则PM=,∴=,解得y=1(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,1+),或(0,1﹣);(2)∵点N(a,1)在反比例函数y=(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有解得,∴直线MN的解析式为y=﹣x+3.∵点C是直线y=﹣x+3与x轴的交点,∴点C的坐标为(3,0),OC=3,∵S△MNQ=2,∴S△MNQ=S△MQC﹣S△NQC=×QC×4﹣×QC×1=QC=2,∴QC=1,∵C(3,0),Q(m,0),∴|m﹣3|=1,∴m=7或2,故答案为7或2.【题目点拨】本题是反比例函数综合问题,解题的关键是掌握待定系数法求一次函数和反比例函数解析式、等腰三角形的判定与性质、两点之间的距离公式及三角形的面积计算.21、(1);(2)k=1【分析】(1)由△≥1,求出k的范围;(2)由根与系数的关系可知:x1+x2=﹣2k﹣1,x1x2=k2,代入等式求解即可.【题目详解】解:(1)∵一元二次方程x2+(2k+1)x+k2=1有实数根,∴△=(2k+1)2﹣4k2≥1,∴;(2)由根与系数的关系可知:x1+x2=﹣2k﹣1,x1x2=k2,∴2x1x2﹣x1﹣x2=2k2+2k+1=1,∴k=1或k=﹣1,∵;∴k=1.【题目点拨】本题考查根与系数的关系;熟练掌握一元二次方程根与系数的关系,并能用判别式判断根的存在情况是解题的关键.22、(1)详见解析;(2)【分析】(1)证法一:连接,利用圆周角定理得到,从而证明,然后利用同弧所对的圆周角相等及三角形外角的性质得到,从而使问题得解;证法二:连接,,由圆周角定理得到,从而判定,得到,然后利用圆内接四边形对角互补可得,从而求得,使问题得解;(2)首先利用勾股定理和三角形面积求得AG的长,解法一:过点作于点,利用勾股定理求GH,CH,CD的长;解法二:过点作于点,利用AA定理判定,然后根据相似三角形的性质列比例式求解.【题目详解】(1)证法一:连接.∵为的直径,∴,∴∵,∴∴∴.∵∴∵,∴∴.证法二:连接,.∵为的直径,∴∵∴∴,∴∴∵∴∵∴∴∴∵四边形内接于,∴∴∴∴.(2)解:在中,,,,根据勾股定理得.连接,∵为的直径,∴∴∴∵∴∵∴∴∴四边形是平行四边形.∴.在中,,∴解法一:过点作于点∴在中,,∴在中,∴在中,∴解法二:过点作于点∴∵∴∵∴四边形为矩形∴.∵四边形为平行四边形,∴∴.∵,∴∴即∴【题目点拨】本题考查圆的综合知识,相似三角形的判定和性质,勾股定理解直角三角形,综合性较强,有一定难度.23、(1);(2);(3)是,【分析】(1)若,则,代入数值即可求得CD,从而求得的半径.(2)当与相切时,则CD⊥AB,利用△ACD∽△ABO,得出比例式求得CD,AD的长,过P点作PE⊥AO于E点,再利用△CPE∽△CAD,得出比例式求得P点的坐标,即可求得△POB的面积.(3)①若与AB有一个交点,则与AB相切,由(2)可得PD⊥AB,PD=,则②若与AB有两个交点,设另一个交点为F,连接CF,则∠CFD=90°,由(2)可得CF=3,过P点作PG⊥AB于G点,则DG=,PG为△DCF的中位线,PG=,则,综上所述,△PAB的面积是定值,为.【题目详解】(1)根据题意得:OA=8,OB=6,OC=3∴AC=5∵∴即∴CD=∴的半径为(2)在直角三角形AOB中,OA=8,OB=6,∴AB=,当与相切时,CD⊥AB,∴∠ADC=∠AOB=90°,∠CAD=∠BAO∴△ACD∽△ABO∴,即∴CD=3,AD=4∵CD为圆P的直径∴CP=过P点作PE⊥AO于E点,则∠PEC=∠ADC=90°,∠P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代办公环境下的家校协同教育模式探讨
- 新课改下的小学数学教学策略变化与影响
- 算法优化在嵌入式办公系统中的实践案例
- 针对学习障碍学生的专业辅导课程设置
- 个人仓储租赁合同模板
- 上海市商品买卖合同范本
- 买卖合同争议解决协议书模板
- 不动产附负担租赁合同
- 个人培训机构与教师签订劳动合同的法律效力解析
- 个人借车合同范本
- 多维阅读第10级 who is who 看看都是谁
- 滑雪运动介绍
- 高二下学期英语阅读限时训练(一)
- 半导体制造工艺-13薄膜沉积(下)综述课件
- 大数据和人工智能知识考试题库600题(含答案)
- 2021译林版高中英语选择性必修一单词表
- 保健食品经营环节检查方法
- 民法典关于监护的规定解读
- 幼儿园大班综合《月亮姑娘做衣裳》微课件
- 显微外科课件
- 教育哲学课件第一章-教育哲学的历史发展
评论
0/150
提交评论