版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2014-2015学年浙江省宁波市九年级(上)期中数学试卷一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(3分)(2015秋•莘县期末)若==,且3a﹣2b+c=3,则2a+4b﹣3c的值是()A.14 B.42 C.7 D.2.(3分)(2014秋•宁波期中)函数与的图象的不同之处是()A.对称轴 B.开口方向 C.顶点 D.形状3.(3分)(2014秋•宁波期中)如图,A、B、C、D四点都在⊙O上,∠BOC=110°,则∠BDC等于()A.110° B.70° C.55° D.125°4.(3分)(2007•湖州)如图,在Rt△ABC中∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法确定5.(3分)(2014秋•宁波期中)抛物线的顶点坐标是()A.(,﹣3) B.(﹣3,0) C.(0,﹣3) D.(0,3)6.(3分)(2013•哈尔滨)在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为()A. B. C. D.7.(3分)(2016春•温州校级期中)函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若﹣2<x1<x2,则()A.y1<y2 B.y1>y2C.y1=y2 D.y1、y2的大小不确定8.(3分)(2014秋•宁波期中)下列命题中,真命题的个数是()①平分弦的直径垂直于弦;②圆内接平行四边形必为矩形;③90°的圆周角所对的弦是直径;④任意三个点确定一个圆;⑤同弧所对的圆周角相等.A.5 B.4 C.3 D.29.(3分)(2015秋•上杭县期中)半径为2cm的⊙O中有长为2cm的弦AB,则弦AB所对的圆周角度数为()A.600 B.900 C.60°或120° D.45°或90°10.(3分)(2011•湖州)如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P纵坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)(2010•济宁校级模拟)如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8,OF=6,则圆的直径为.12.(4分)(2011•吉林)如图,⊙O是△ABC的外接圆,∠BAC=50°,点P在AO上(点P不点A.O重合),则∠BPC可能为度(写出一个即可).13.(4分)(2014秋•宁波期中)图象的顶点为(﹣2,﹣2),且经过原点的二次函数的解析式是.14.(4分)(2014秋•宁波期中)抛物线y=﹣x2﹣4x﹣7可由函数y=﹣x2图象经过怎样的平移得到的?答.15.(4分)(2014秋•宁波期中)如图,在平面直角坐标系xOy中,直径为10的⊙E交x轴于点A、B,交y轴于点C、D,且点A、B的坐标分别为(﹣4,0)、(2,0).过E点的双曲线的解析式为.16.(4分)(2015秋•蚌埠期中)二次函数y=ax2+bx+c的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac﹣b2<0;⑤当x≠2时,总有4a+2b>ax2+bx其中正确的有(填写正确结论的序号).三.全面答一答(本题有8个小题,共66分)证明过程或推演步骤.如果觉得有的题目有点困难,那么把自解答应写出文字说明己能写出的解答写出一部分也可以.17.(6分)(2013•温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?18.(6分)(2014秋•宁波期中)已知等腰△ABC,AB=AC=4,∠BAC=120°,请用圆规和直尺作出△ABC的外接圆.并计算此外接圆的半径.19.(8分)(2012•安顺)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.20.(6分)(2008•湛江)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的直径.21.(10分)(2013•益阳)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.22.(10分)(2007•呼和浩特)已知:如图,等边△ABC内接于⊙O,点P是劣弧上的一点(端点除外),延长BP至D,使BD=AP,连接CD.(1)若AP过圆心O,如图①,请你判断△PDC是什么三角形?并说明理由;(2)若AP不过圆心O,如图②,△PDC又是什么三角形?为什么?23.(10分)(2008•巴中)王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请写出抛物线的开口方向,顶点坐标,对称轴.(2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.24.(10分)(2012•成华区校级模拟)问题情境已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?数学模型设该矩形的长为x,周长为y,则y与x的函数关系式为.探索研究(1)我们可以借鉴学习函数的经验,先探索函数的图象性质.1填写下表,画出函数的图象:x…1234…y……②观察图象,写出该函数两条不同类型的性质;③在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,除了通过观察图象,还可以通过配方得到.同样通过配方也可以求函数(x>0)的最小值.===≥2当=0,即x=1时,函数(x>0)的最小值为2.解决问题(2)解决“问题情境”中的问题,直接写出答案.
2014-2015学年浙江省宁波市九年级(上)期中数学试卷参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(3分)(2015秋•莘县期末)若==,且3a﹣2b+c=3,则2a+4b﹣3c的值是()A.14 B.42 C.7 D.【分析】根据比例的基本性质,把比例式转换为等积式后,能用其中一个字母表示另一个字母,达到约分的目的即可.【解答】解:设a=5k,则b=7k,c=8k,又3a﹣2b+c=3,则15k﹣14k+8k=3,得k=,即a=,b=,c=,所以2a+4b﹣3c=.故选D.【点评】根据已知条件得到关于未知数的方程,从而求得各个字母,再进一步计算代数式的值.2.(3分)(2014秋•宁波期中)函数与的图象的不同之处是()A.对称轴 B.开口方向 C.顶点 D.形状【分析】根据二次函数的性质得出,a决定开口大小以及方向,再利用顶点坐标位置得出不同.【解答】解:与的图象顶点坐标为:(0,1),(0,0),故图象的不同之处是顶点坐标位置.故选:C.【点评】此题考查了二次函数的性质,属于基础题,掌握二次函数的性质得出顶点坐标位置是解题关键.3.(3分)(2014秋•宁波期中)如图,A、B、C、D四点都在⊙O上,∠BOC=110°,则∠BDC等于()A.110° B.70° C.55° D.125°【分析】根据同弧所对的圆心角等于所对圆周角的2倍,可得圆心角∠BOC是圆周角∠CAB的2倍,进而由∠BOC的度数求出∠CAB的度数,再根据圆内接四边形的对角互补,由四边形ABDC为圆O的内接四边形,可得∠CAB与∠BDC互补,由∠CAB的度数即可求出∠BDC的度数.【解答】解:∵圆心角∠BOC和圆周角∠CAB都对,∴∠BOC=2∠CAB,又∠BOC=110°,∴∠CAB=55°,又四边形ABDC为圆O的内接四边形,∴∠CAB+∠BDC=180°,则∠BDC=180°﹣∠CAB=125°.故选D【点评】此题考查了圆周角定理,以及圆内接四边形的性质,利用了转化的思想,圆周角定理为同弧所对的圆周角等于所对圆心角的一半;圆内接四边形的对角互补,熟练掌握此定理及性质是解本题的关键.4.(3分)(2007•湖州)如图,在Rt△ABC中∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是()A.点P在⊙O内 B.点P在⊙O上 C.点P在⊙O外 D.无法确定【分析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内,即可求解.【解答】解:∵AC=6,AB=10,CD是斜边AB上的中线,∴AD=5,∵点O是AC中点,点P是CD中点,∴OP是△CAD的中位线,OC=OA=3,∴OP=AD=2.5,∵OP<OA,∴点P在⊙O内,故选A.【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.5.(3分)(2014秋•宁波期中)抛物线的顶点坐标是()A.(,﹣3) B.(﹣3,0) C.(0,﹣3) D.(0,3)【分析】形如y=ax2+k的顶点坐标为(0,k),据此可以直接求顶点坐标.【解答】解:抛物线y=x2﹣3的顶点坐标为(0,﹣3).故选:C.【点评】此题考查了二次函数的性质.二次函数的顶点式方程y=a(x﹣k)2+h的顶点坐标是(k,h),对称轴方程是x=k.6.(3分)(2013•哈尔滨)在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为()A. B. C. D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为:=.故选C.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.7.(3分)(2016春•温州校级期中)函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若﹣2<x1<x2,则()A.y1<y2 B.y1>y2C.y1=y2 D.y1、y2的大小不确定【分析】先确定抛物线的对称轴及开口方向,再根据点与对称轴的远近,判断函数值的大小.【解答】解:∵y=﹣2x2﹣8x+m=﹣2(x+2)2+m+8,∴对称轴是x=﹣2,开口向下,距离对称轴越近,函数值越大,∵﹣2<x1<x2,∴y1>y2.故选B.【点评】主要考查了二次函数的图象性质及单调性的规律.8.(3分)(2014秋•宁波期中)下列命题中,真命题的个数是()①平分弦的直径垂直于弦;②圆内接平行四边形必为矩形;③90°的圆周角所对的弦是直径;④任意三个点确定一个圆;⑤同弧所对的圆周角相等.A.5 B.4 C.3 D.2【分析】根据垂径定理、圆内接四边形的性质、圆周角定理、过不在同一直线上的三个点定理即可对每一种说法的正确性作出判断.【解答】解:∵平分弦(不能是直径)的直径垂直于弦,①故错误;∵圆内接四边形对角互补,平行四边形对角相等,∴圆的内接平行四边形中,含有90°的内角,即为矩形,②故正确;∵有圆周角定理的推论可知:90°的圆周角所对的弦是直径,③故正确;∵经过不在同一直线上的三点可以作一个圆,④故错误;∵有圆周角定理可知:同弧或等弧所对的圆周角相等.⑤故正确,∴真命题的个数为3个,故选C.【点评】本题考查了垂径定理、圆内接四边形的性质、圆周角定理和过不在同一直线上的三个点定理,准确掌握各种定理是解题的关键.9.(3分)(2015秋•上杭县期中)半径为2cm的⊙O中有长为2cm的弦AB,则弦AB所对的圆周角度数为()A.600 B.900 C.60°或120° D.45°或90°【分析】首先根据题意画出图形,作OD⊥AB,通过垂径定理,即可推出∠AOD的度数,求得∠AOB的度数,然后根据圆周角定理,即可推出∠AMB和∠ANB的度数【解答】解:连接OA,做OD⊥AB,∵OA=2cm,AB=2cm,∴AD=BD=,∴AD:OA=:2,∴∠AOD=60°,∴∠AOB=120°,∴∠AMB=60°,∴∠ANB=120°.∴弦AB所对的圆周角度数为60°或120°.故选C.【点评】本题主要考查圆周角定理、垂径定理,关键在于根据题意正确的画出图形,运用圆周角定理和垂径定理认真的进行分析.10.(3分)(2011•湖州)如图,已知A、B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P纵坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,点P运动的时间为t,则S关于t的函数图象大致为()A. B. C. D.【分析】通过两段的判断即可得出答案,①点P在AB上运动时,此时四边形OMPN的面积不变,可以排除B、D;②点P在BC上运动时,S减小,S与t的关系为一次函数,从而排除C.【解答】解:①点P在AB上运动时,此时四边形OMPN的面积S=K,保持不变,故排除B、D;②点P在BC上运动时,设路线O→A→B→C的总路程为l,点P的速度为a,则S=OC×CP=OC×(l﹣at),因为l,OC,a均是常数,所以S与t成一次函数关系.故排除C.故选A【点评】本题考查了动点问题的函数图象,解答此类题目并不需要求出函数解析式,只要判断出函数的增减性,或者函数的性质即可,注意排除法的运用.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)(2010•济宁校级模拟)如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8,OF=6,则圆的直径为.【分析】连接FE,根据OE⊥OF,可知FE为圆的直径,利用勾股定理即可求解.【解答】解:连接FE,如右图所示:∵OE⊥OF,∴FE为圆的直径.在Rt△FOE中,FE===10.【点评】此题是一道生活问题.解题的关键是根据题意抽象出90°的圆周角并确定直径,然后根据勾股定理解答.12.(4分)(2011•吉林)如图,⊙O是△ABC的外接圆,∠BAC=50°,点P在AO上(点P不点A.O重合),则∠BPC可能为度(写出一个即可).【分析】首先连接OB与OC,由∠BAC=50°,根据同弧所对圆周角等于其所对圆心角的一半,即可求得∠BOC的度数,又由∠BAC<∠BPC<∠BOC,即可求得答案.【解答】解:连接OB与OC,∵⊙O是△ABC的外接圆,∠BAC=50°,∴∠BOC=2∠BAC=100°,∵∠BAC<∠BPC<∠BOC,∴50°<∠BPC<100°.故答案为:70(答案不唯一,大于50小于100都可).【点评】此题考查了三角形外接圆的知识与圆周角定理.此题难度不大,解题的关键是注意数形结合思想的应用,注意辅助线的作法.13.(4分)(2014秋•宁波期中)图象的顶点为(﹣2,﹣2),且经过原点的二次函数的解析式是.【分析】已知了抛物线的顶点坐标,适合用二次函数的顶点式y=a(x﹣h)2+k来解答.【解答】解:根据题意,设抛物线的解析式为y=a(x+2)2﹣2,由于抛物线经过原点,则有:0=4a﹣2,a=;这个二次函数的解析式为y=(x+1)2﹣2.故答案为:(或).【点评】本题主要考查了用待定系数法求二次函数解析式的方法,在已知抛物线顶点坐标的情况下,通常用顶点式设二次函数的解析式.14.(4分)(2014秋•宁波期中)抛物线y=﹣x2﹣4x﹣7可由函数y=﹣x2图象经过怎样的平移得到的?答.【分析】按照“左加右减,上加下减”的规律求则可.【解答】解:函数y=﹣x2图象向左平移2个单位,得抛物线y=﹣(x+2)2,再向下平移3个单位可得到抛物线y=﹣(x+2)2﹣3=﹣x2﹣4x﹣7.故答案为:向左平移2个单位,再向下平移3个单位.【点评】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.15.(4分)(2014秋•宁波期中)如图,在平面直角坐标系xOy中,直径为10的⊙E交x轴于点A、B,交y轴于点C、D,且点A、B的坐标分别为(﹣4,0)、(2,0).过E点的双曲线的解析式为.【分析】先设出反比例函数的解析式为y=,再过E作OF⊥AB于F,连接OE、EC,先根据A、B点的坐标求出AB的长,再根据垂径定理求出AF的长,OF的长即可求出,再利用勾股定理求出弦心距,E点坐标也就求出了进而求出反比例函数的解析式.【解答】解:设反比例函数的解析式为y=,作EF⊥x轴,交x轴于点F,连接EA,∵A、B的坐标分别为(﹣4,0)、(2,0),∴AB=6,OA=4,∴AF=3,∴OF=1,∵⊙E的直径为10,∴半径EA=5,∴EF=4,∴E的坐标是(﹣1,4),∴k=﹣1×4=﹣4,∴y=﹣.故答案为y=﹣.【点评】本题主要考查垂径定理的应用和勾股定理的运用以及用待定系数法求反比例函数的解析式,熟练掌握定理是解题的关键.16.(4分)(2015秋•蚌埠期中)二次函数y=ax2+bx+c的图象如图所示,以下结论:①a+b+c=0;②4a+b=0;③abc<0;④4ac﹣b2<0;⑤当x≠2时,总有4a+2b>ax2+bx其中正确的有(填写正确结论的序号).【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可知:当x=1时y=0,∴a+b+c=0.∴正确;②由图象可知:对称轴x=﹣=2,∴4a+b=0,∴正确;由抛物线与x轴有两个交点可以推出b2﹣4ac>0,正确;③由抛物线的开口方向向下可推出a<0因为对称轴在y轴右侧,对称轴为x=﹣>0,又因为a<0,b>0;由抛物线与y轴的交点在y轴的负半轴上,∴c<0,故abc>0,错误;④由抛物线与x轴有两个交点可以推出b2﹣4ac>0∴4ac﹣b2<0正确;⑤∵对称轴为x=2,∴当x=2时,总有y=ax2+bx+c=4a+2b+c>0,∴4a+2b>ax2+bx正确.故答案为:①②④⑤.【点评】此题考查学生掌握二次函数的图象与性质,考查了数形结合的数学思想,是一道中档题.解本题的关键是根据图象找出抛物线的对称轴.三.全面答一答(本题有8个小题,共66分)证明过程或推演步骤.如果觉得有的题目有点困难,那么把自解答应写出文字说明己能写出的解答写出一部分也可以.17.(6分)(2013•温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?【分析】(1)根据概率公式,求摸到黄球的概率,即用黄球的个数除以小球总个数即可得出得到黄球的概率;(2)假设取走了x个黑球,则放入x个黄球,进而利用概率公式得出不等式,求出即可.【解答】解:(1)∵一个不透明的袋中装有5个黄球,13个黑球和22个红球,∴摸出一个球摸是黄球的概率为:=;(2)设取走x个黑球,则放入x个黄球,由题意,得≥,解得:x≥,∵x为整数,∴x的最小正整数解是x=9.答:至少取走了9个黑球.【点评】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.(6分)(2014秋•宁波期中)已知等腰△ABC,AB=AC=4,∠BAC=120°,请用圆规和直尺作出△ABC的外接圆.并计算此外接圆的半径.【分析】作出AB,AC的垂直平分线,两垂直平分线的交点就是圆心,以交点为圆心,交点到三角形的顶点为半径画圆可得△ABC的外接圆;再根据垂径定理得出∠BAO=60°,得出△ABO为等边三角形,从而求得外接圆的半径.【解答】解:画图如下:(3分)∵AB=AC=4,∠BAC=120°,AO⊥BC,∴∠BAO=60°,∴△ABO为等边三角形,∴△ABC的外接圆的半径为4.(3分)【点评】本题考查了三角形外接圆的确定及垂径定理的应用,等边三角形的判定和性质;用到的知识点为:三角形外接圆的圆心是任意两边垂直平分线的交点;有一个角为60°的等腰三角形是等边三角形.19.(8分)(2012•安顺)如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.【分析】(1)根据圆周定理以及三角形外角求出即可;(2)利用三角形中位的性质得出EO=AD,即可得出答案.【解答】解:(1)∵∠APD=∠C+∠CAB,∴∠C=65°﹣40°=25°,∴∠B=∠C=25°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴,圆心O到BD的距离为3.【点评】此题主要考查了圆周角定理以及三角形中位线定理,根据已知得出EO=AD是解题关键.20.(6分)(2008•湛江)如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E.连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8cm,CD=24cm,求⊙O的直径.【分析】(1)根据垂径定理和圆的性质,同弧的圆周角相等,又因为△AOC是等腰三角形,即可求证.(2)根据勾股定理,求出各边之间的关系,即可确定半径.【解答】(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=90°,∠BCD与∠ACE互余;又∠ACE与∠CAE互余∴∠BCD=∠BAC.(3分)∵OA=OC,∴∠OAC=∠OCA.∴∠ACO=∠BCD.(5分)(2)解:设⊙O的半径为Rcm,则OE=OB﹣EB=(R﹣8)cm,CE=CD=×24=12cm,(6分)在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R﹣8)2+122(8分)解得R=13,∴2R=2×13=26cm.答:⊙O的直径为26cm.(10分)【点评】本题考查垂弦定理、圆心角、圆周角的应用能力.21.(10分)(2013•益阳)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.【解答】证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.【点评】本题考查了相似三角形的判定,等腰三角形三线合一的性质,比较简单,确定出两组对应相等的角是解题的关键.22.(10分)(2007•呼和浩特)已知:如图,等边△ABC内接于⊙O,点P是劣弧上的一点(端点除外),延长BP至D,使BD=AP,连接CD.(1)若AP过圆心O,如图①,请你判断△PDC是什么三角形?并说明理由;(2)若AP不过圆心O,如图②,△PDC又是什么三角形?为什么?【分析】(1)根据已知利用SAS判定△APC≌△BDC,从而得到PC=DC,因为AP过圆心O,AB=AC,∠BAC=60°,所以∠BAP=∠PAC=∠BAC=30°,又知∠CPD=∠PBC+∠BCP=30°+30°=60°,从而推出△PDC为等边三角形;(2)同理可证△PDC为等边三角形.【解答】解:(1)如图①,△PDC为等边三角形.(2分)理由如下:∵△ABC为等边三角形∴AC=BC∵在⊙O中,∠PAC=∠PBC又∵AP=BD∴△APC≌△BDC∴PC=DC∵AP过圆心O,AB=AC,∠BAC=60°∴∠BAP=∠PAC=∠BAC=30°∴∠PBC=∠PAC=30°,∠BCP=∠BAP=30°∴∠CPD=∠PBC+∠BCP=30°+30°=60°∴△PDC为等边三角形;(6分)(2)如图②,△PDC仍为等边三角形.(8分)理由如下:∵△ABC为等边三角形∴AC=BC∵在⊙O中,∠PAC=∠PBC又∵AP=BD∴△APC≌△BDC∴PC=DC∵∠BAP=∠BCP,∠PBC=∠PAC∴∠CPD=∠PBC+∠BCP=∠PAC+∠BAP=60°∴△PDC为等边三角形.(12分)【点评】此题主要考查学生对学生以圆周角定理及等边三角形的判定方法的理解及运用.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学2024-2025学年下学期教学计划及教学活动安排
- 妊娠合并风湿性心脏病的健康宣教
- 孕期肠痉挛的健康宣教
- EPC项目-高压配变电工程EPC总承包项目-技术标(承包人实施计划方案、实施技术方案、管理组织方案)
- 白癜风的临床护理
- 勾股定理与函数课件
- 哺乳期乳晕水肿的健康宣教
- 课题研究与教学创新方案计划
- 课外活动与实践课程设计计划
- 辅导学生社交能力的有效措施计划
- 2024《整治形式主义为基层减负若干规定》全文课件
- 常用统计软件应用智慧树知到期末考试答案章节答案2024年扬州大学
- 监控中心报警记录表
- 统计软件SPSS教案(全)
- 苏科版一年级心理健康教育第17节《生命更美好》课件(定稿)
- 多层框架结构PKPM设计步骤及平法施工图绘制(湘潭大学)
- 小学体质健康测试教案合集
- 商务英语培训(入门篇)课件
- 矿业公司管理制度(全册参考范本)
- 电子营业执照下载确认书
- CA6140拨叉831002课程设计工序卡
评论
0/150
提交评论