版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
龙岩市五县2024届数学九年级第一学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,AD,BC相交于点O,AB∥CD.若AB=1,CD=2,则△ABO与△DCO的面积之比为A. B. C. D.2.抛物线的对称轴是()A. B. C. D.3.已知如图所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,则BE的长是()A.4cm B.8cm C.16cm D.32cm4.如图,F是平行四边形ABCD对角线BD上的点,BF:FD=1:3,则BE:EC=()A. B. C. D.5.下列图形中,既是轴对称图形,又是中心对称图形的是()A.正三角形 B.正五边形 C.正六边形 D.正七边形6.下列两个图形,一定相似的是()A.两个等腰三角形 B.两个直角三角形C.两个等边三角形 D.两个矩形7.若二次函数的图象与轴仅有一个公共点,则常数的为()A.1 B.±1 C.-1 D.8.如图,一个半径为r(r<1)的圆形纸片在边长为6的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A.πr2 B.C. D.9.如图,已知则添加下列一个条件后,仍无法判定的是()A. B. C. D.10.若一组数据为3,5,4,5,6,则这组数据的众数是()A.3 B.4 C.5 D.6二、填空题(每小题3分,共24分)11.如图,中,,,,是上一个动点,以为直径的⊙交于,则线段长的最小值是_________.12.以原点O为位似中心,作△ABC的位似图形△A′B′C′,△ABC与△A′B′C′相似比为,若点C的坐标为(4,1),点C的对应点为C′,则点C′的坐标为_____.13.一个不透明的口袋中装有5个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,估计口袋中白球有__________个.14.如图,中,,以点为圆心的圆与相切,则的半径为________.15.二次函数中的自变量与函数值的部分对应值如下表:…………则的解为________.16.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x1,第二个三角形数记为x2,…第n个三角形数记为xn,则xn+xn+1=.17.若圆锥的底面周长是10,侧面展开后所得的扇形圆心角为90°,则该圆锥的侧面积是__________。18.小芳的房间有一面积为3
m2的玻璃窗,她站在室内离窗子4
m的地方向外看,她能看到窗前面一幢楼房的面积有____m2(楼之间的距离为20
m).三、解答题(共66分)19.(10分)九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD=3m,标杆与旗杆的水平距离BD=15m,人的眼睛与地面的高度EF=1.6m,人与标杆CD的水平距离DF=2m,求旗杆AB的高度.20.(6分)自2020年3月开始,我国生猪、猪肉价格持续上涨,某大型菜场在销售过程中发现,从2020年10月1日起到11月9日的40天内,猪肉的每千克售价与上市时间的关系用图1的一条折线表示:猪肉的进价与上市时间的关系用图2的一段抛物线表示.(1)________;(2)求图1表示的售价与时间的函数关系式;(3)问从10月1日起到11月9日的40天内第几天每千克猪肉利润最低,最低利润为多少?21.(6分)如图,在平面直角坐标系中,为坐标原点,的边垂直于轴、垂足为点,反比例函数的图象经过的中点、且与相交于点.经过、两点的一次函数解析式为,若点的坐标为,.且.(1)求反比例函数的解析式;(2)在直线上有一点,的面积等于.求满足条件的点的坐标;(3)请观察图象直接写出不等式的解集.22.(8分)图①,图②都是8×8的正方形网格,每个小正方形的顶点称为格点.线段OM,ON的端点均在格点上.在图①,图②给定的网格中以OM,ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)图①中所画的四边形是中心对称图形;(2)图②中所画的四边形是轴对称图形;(3)所画的两个四边形不全等.23.(8分)如图,已知△ABC中,AB=8,BC=10,AC=12,D是AC边上一点,且AB2=AD•AC,连接BD,点E、F分别是BC、AC上两点(点E不与B、C重合),∠AEF=∠C,AE与BD相交于点G.(1)求BD的长;(2)求证△BGE∽△CEF;(3)连接FG,当△GEF是等腰三角形时,直接写出BE的所有可能的长度.24.(8分)“十一”黄金周期间,我市享有“江南八达岭”美誉的江南长城旅游区,为吸引游客组团来此旅游,特推出了如下门票收费标准:标准一:如果人数不超过20人,门票价格60元/人;标准二:如果人数超过20人,每超过1人,门票价格降低2元,但门票价格不低于50元/人.(1)若某单位组织23名员工去江南长城旅游区旅游,购买门票共需费用多少元?(2)若某单位共支付江南长城旅游区门票费用共计1232元,试求该单位这次共有多少名员工去江南长城旅游区旅游?25.(10分)计算:(1)解不等式组(2)化简:26.(10分)今年“五•一”节期间,红星商场举行抽奖促销活动,凡在本商场购物总金额在300元以上者,均可抽一次奖,奖品为精美小礼品.抽奖办法是:在一个不透明的袋子中装有四个标号分别为1,2,3,4的小球,它们的形状、大小、质地等完全相同.抽奖者第一次摸出一个小球,不放回,第二次再摸出一个小球,若两次摸出的小球中有一个小球标号为“1”,则获奖.(1)请你用树形图或列表法表示出抽奖所有可能出现的结果;(2)求抽奖人员获奖的概率.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】根据相似三角形的判定与性质即可求出答案.【题目详解】∵AB∥CD,∴△AOB∽△DOC,∵,∴,故选B.【题目点拨】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.2、D【解题分析】根据二次函数的对称轴公式计算即可,其中a为二次项系数,b为一次项系数.【题目详解】由二次函数的对称轴公式得:故选:D.【题目点拨】本题考查了二次函数的对称轴公式,熟记公式是解题关键.3、C【分析】连接CE,先由三角形内角和定理求出∠B的度数,再由线段垂直平分线的性质及三角形外角的性质求出∠CEA的度数,由直角三角形中30°所对的直角边是斜边的一半即可解答.【题目详解】解:连接CE,∵Rt△ABC中,∠A=90°,∠BCA=75°,∴∠B=90°﹣∠BCA=90°﹣75°=15°,∵DE垂直平分BC,∴BE=CE,∴∠BCE=∠B=15°,∴∠AEC=∠BCE+∠B=30°,∵Rt△AEC中,AC=8cm,∴CE=2AC=16cm,∵BE=CE,∴BE=16cm.故选:C.【题目点拨】此题考查的是垂直平分线的性质、等腰三角形的性质、三角形外角的性质和直角三角形的性质,掌握垂直平分线的性质、等边对等角、三角形外角的性质和30°所对的直角边是斜边的一半是解决此题的关键.4、A【解题分析】试题解析:是平行四边形,故选A.5、C【分析】根据轴对称图形与中心对称图形的概念求解即可.【题目详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误;
B、此图形不是中心对称图形,是轴对称图形,故此选项错误;
C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;
D、此图形不是中心对称图形,是轴对称图形,故此选项错误.
故选:C.【题目点拨】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、C【解题分析】根据相似三角形的判定方法一一判断即可;所应用判断方法:两角对应相等,两三角形相似.【题目详解】解:∵两个等边三角形的内角都是60°,
∴两个等边三角形一定相似,
故选C.【题目点拨】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.7、C【分析】函数为二次函数与x轴仅有一个公共点,所以根据△=0即可求出k的值.【题目详解】解:当时,二次函数y=kx2+2x-1的图象与x轴仅有一个公共点,
解得k=-1.故选:C.【题目点拨】本题考查二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.8、C【分析】当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,根据六边形的性质得出,所以,再由锐角三角函数的定义求出BF的长,最后利用可得出答案.【题目详解】如图,当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,∵多边形是正六边形,∴,,∴圆形纸片不能接触到的部分的面积是故选:C.【题目点拨】本题主要考查正六边形和圆,掌握正六边形的性质和特殊角的三角函数值是解题的关键.9、A【分析】先根据∠1=∠2得出∠BAC=∠DAE,再由相似三角形的判定定理对各选项进行逐一判定即可.【题目详解】解:∵∠1=∠2,
∴∠BAC=∠DAE.A.,∠B与∠D的大小无法判定,∴无法判定△ABC∽△ADE,故本选项符合题意;B.,∴△ABC∽△ADE,故本选项不符合题意;C.∴△ABC∽△ADE,故本选项不符合题意;D.∴△ABC∽△ADE,故本选项不符合题意;故选:A【题目点拨】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.10、C【分析】根据众数的定义即可求解.【题目详解】一组数据为3,5,4,5,6中,5出现的次数最多,∴这组数据的众数为5;
故选:C.【题目点拨】本题考查了众数的概念,众数是一组数据中出现次数最多的数,注意一组数据的众数可能不只一个.二、填空题(每小题3分,共24分)11、【分析】连接AE,可得∠AED=∠BEA=90°,从而知点E在以AB为直径的⊙Q上,继而知点Q、E、C三点共线时CE最小,根据勾股定理求得QC的长,即可得线段CE的最小值.【题目详解】解:如图,连接AE,则∠AED=∠BEA=90°(直径所对的圆周角等于90°),
∴点E在以AB为直径的⊙Q上,
∵AB=4,
∴QA=QB=2,
当点Q、E、C三点共线时,QE+CE=CQ(最短),
而QE长度不变为2,故此时CE最小,
∵AC=5,
,
∴,
故答案为:.【题目点拨】本题考查了圆周角定理和勾股定理的综合应用,解决本题的关键是确定E点运动的轨迹,从而把问题转化为圆外一点到圆上一点的最短距离问题.12、或【解题分析】根据位似变换的性质计算即可.【题目详解】解:∵△ABC与△A'B'C'相似比为,若点C的坐标为(4,1),∴点C′的坐标为或∴点C′的坐标为或故答案为或【题目点拨】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.13、15【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【题目详解】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴,解得x=15,检验:x=15是原方程的根,∴白球的个数为15个,故答案为:15.【题目点拨】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出和分式方程的解法解题关键.14、【解题分析】试题解析:在△ABC中,∵AB=5,BC=3,AC=4,如图:设切点为D,连接CD,∵AB是C的切线,∴CD⊥AB,∴AC⋅BC=AB⋅CD,即∴的半径为故答案为:点睛:如果三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.15、或【分析】由二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点.继而求得答案.【题目详解】解:∵二次函数y=ax2+bx+c(a≠0)过点(-1,-2),(0,-2),∴此抛物线的对称轴为:直线x=-,∵此抛物线过点(1,0),∴此抛物线与x轴的另一个交点为:(-2,0),∴ax2+bx+c=0的解为:x=-2或1.故答案为x=-2或1.【题目点拨】此题考查了抛物线与x轴的交点问题.此题难度适中,注意掌握二次函数的对称性是解此题的关键.16、.【分析】根据三角形数得到x1=1,x1=3=1+1,x3=6=1+1+3,x4=10=1+1+3+4,x5=15=1+1+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,即xn=1+1+3+…+n=、xn+1=,然后计算xn+xn+1可得.【题目详解】∵x1=1,
x1═3=1+1,
x3=6=1+1+3,
x4═10=1+1+3+4,
x5═15=1+1+3+4+5,
…
∴xn=1+1+3+…+n=,xn+1=,
则xn+xn+1=+=(n+1)1,
故答案为:(n+1)1.17、100π【分析】圆锥侧面展开图的弧长=底面周长,利用弧长公式即可求得圆锥母线长,那么圆锥的侧面积=底面周长×母线长÷1.【题目详解】解:设扇形半径为R.
∵底面周长是10π,扇形的圆心角为90°,
∴10π=×1πR,∴R=10,
∴侧面积=×10π×10=100π,
故选:C.【题目点拨】本题利用了圆的周长公式和扇形面积公式求解.18、108【解题分析】考点:平行投影;相似三角形的应用.分析:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.解答:解:根据题意:她能看到窗前面一幢楼房的图形与玻璃窗的外形应该相似,且相似比为=6,故面积的比为36;故她能看到窗前面一幢楼房的面积有36×3=108m1.点评:本题考查了平行投影、视点、视线、位似变换、相似三角形对应高的比等于相似比等知识点.注意平行投影特点:在同一时刻,不同物体的物高和影长成比例三、解答题(共66分)19、13.5m【分析】利用三角形相似中的比例关系,首先由题目和图形可看出,求AB的长度分成了2个部分,AH和HB部分,其中HB=EF=1.6m,剩下的问题就是求AH的长度,利用△CGE∽△AHE,得出,把相关条件代入即可求得AH=11.9,所以AB=AH+HB=AH+EF=13.5m.【题目详解】解:∵CD⊥FB,AB⊥FB,∴CD∥AB∴△CGE∽△AHE∴即:∴∴AH=11.9∴AB=AH+HB=AH+EF=11.9+1.6=13.5(m).【题目点拨】此题考查的是相似三角形的应用,掌握相似三角形的判定和性质是解决此题的关键.20、(1);(2);(3)当20天或40天,最小利润为10元千克【分析】(1)把代入可得结论;(2)当时,设,把,代入;当时,设,把,代入,分别求解即可;(3)设利润为,分两种情形:当时、当时,利用二次函数的性质分别求解即可.【题目详解】解:(1)把代入,得到,故答案为:.(2)当时,设,把,代入得到,解得,.当时,设,把,代入得到,解得,.综上所述,.(3)设利润为.当时,,当时,有最小值,最小值为10(元千克).当时,,当时,最小利润(元千克),综上所述,当20天或40天,最小利润为10元千克.【题目点拨】本题考查二次函数的应用、一次函数的性质、待定系数法等知识,解题的关键从函数图象中获取信息,利用待定系数法求得解析式.21、(1)y1=;(2)P(2,4)或(﹣14,﹣4);(3)x<﹣4或﹣2<x<1.【分析】(1)把D(-4,1)代入(x<1),利用待定系数法即可求得;(2)根据题意求得C点的坐标,进而根据待定系数法求得直线CD的解析式,根据三角形的面积求得P点的纵坐标,代入直线解析式即可求得横坐标;
(3)根据两函数图象的上下位置关系即可得出不等式的解集.【题目详解】(1)把(﹣4,1)代入(x<1),解得:k1=﹣4,∴反比例函数的解析式为:y1=;(2)由点D的坐标为(﹣4,1),且AD=3,∴点A的坐标为(﹣4,4),∵点C为OA的中点,∴点C的坐标为(﹣2,2),将点D(﹣4,1)和点C(﹣2,2)代入y2=k2x+b,得k2=,b=3,即y2=,设点P的坐标为(m,n)∵△POB的面积等于8,OB=4,∴=8,∴即,代入y2=,得到点P的坐标为(2,4)或(﹣14,﹣4);(3)观察函数图象可知:当x<﹣4或﹣2<x<1时,反比例函数图象在一次函数图象的上方,∴不等式的解集为:x<﹣4或﹣2<x<1.【题目点拨】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是求得C点的坐标.22、(1)见解析;(2)见解析;(3)见解析【分析】(1)设小正方形的边长为1,由勾股定理可知,由图,结合题中要求可以OM,ON为邻边画一个菱形;(2)符合题意的有菱形、筝形等是轴对称图形;(3)图①和图②的两个四边形不能是完全相同的.【题目详解】解:(1)如图即为所求(2)如图即为所求【题目点拨】本题考查了轴对称与中心对称图形,属于开放题,熟练掌握轴对称与中心对称图形的含义是解题的关键.23、(1);(2)见解析;(3)4或﹣5+或﹣3+【分析】(1)证明△ADB∽△ABC,可得,由此即可解决问题.(2)想办法证明∠BEA=∠EFC,∠DBC=∠C即可解决问题.(3)分三种情形构建方程组解决问题即可.【题目详解】(1)∵AB=8,AC=12,又∵AB2=AD•AC∴∵AB2=AD•AC,∴,又∵∠BAC是公共角∴△ADB∽△ABC,∴∴=∴.(2)∵AC=12,,∴,∴BD=CD,∴∠DBC=∠C,∵△ADB∽△ABC∴∠ABD=∠C,∴∠ABD=∠DBC,∵∠BEF=∠C+∠EFC,即∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE.(3)如图中,过点A作AH∥BC,交BD的延长线于点H,设BE=x,CF=y,∵AH∥BC,∴====,∵BD=CD=,AH=8,∴AD=DH=,∴BH=12,∵AH∥BC,∴=,∴=,∴BG=,∵∠BEF=∠C+∠EFC,∴∠BEA+∠AEF=∠C+∠EFC,∵∠AEF=∠C,∴∠BEA=∠EFC,又∵∠DBC=∠C,∴△BEG∽△CFE,∴=,∴=,∴y=;当△GEF是等腰三角形时,存在以下三种情况:①若GE=GF,如图中,则∠GEF=∠GFE=∠C=∠DBC,∴△GEF∽△DBC,∵BC=10,DB=DC=,∴==,又∵△BEG∽△CFE,∴==,即=,又∵y=,∴x=BE=4;②若E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农村种植股合同范例
- 2024年度农业装备租赁合同书范本:无人机农业应用3篇
- 合作人双方合同范例
- 2024年KTV房间租赁合同(含特色演艺项目)
- 殡葬用品代销合同范例
- 2024年农业专业合作社农村电商合作发展合同3篇
- 2024年建筑项目工程资料归档与保密合同
- 月饼团购协议合同范例
- 2024年度宠物克隆技术与咨询服务合同2篇
- 2024年城市道路安防监控系统建设合同2篇
- 绝缘尖嘴钳安全技术操作规程
- 《星巴克案例分析》课件
- 感动中国十大人物顾方舟事迹ppt(思修课堂展示or爱国主题演讲)
- 2023动力锂离子电池运输安全技术规范
- 易制毒化学品日检查记录表
- 购买宠物起诉状范本
- 《建筑与市政工程施工质量控制通用规范》宣贯课件
- 建筑现象学空间解析
- 《电子商务法规》全套课件-电子商务法律法规
- 论语文言文中英文对照版
- 电子信息工程-外文翻译-外文文献-英文文献-文献翻译
评论
0/150
提交评论