2024届浙江省湖州市实验学校数学九年级第一学期期末综合测试试题含解析_第1页
2024届浙江省湖州市实验学校数学九年级第一学期期末综合测试试题含解析_第2页
2024届浙江省湖州市实验学校数学九年级第一学期期末综合测试试题含解析_第3页
2024届浙江省湖州市实验学校数学九年级第一学期期末综合测试试题含解析_第4页
2024届浙江省湖州市实验学校数学九年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省湖州市实验学校数学九年级第一学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4 B.3 C.2 D.12.如图,在中,.以为直径作半圆,交于点,交于点,若,则的度数是()A. B. C. D.3.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则线段CD的长为()A.2 B. C.3 D.4.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是()A.有两个相等的实数根 B.有两个异号的实数根C.有两个不相等的实数根 D.没有实数根5.如图,在△ABC中,E,G分别是AB,AC上的点,∠AEG=∠C,∠BAC的平分线AD交EG于点F,若,则()A. B. C. D.6.如图,已知直线y=x与双曲线y=(k>0)交于A、B两点,A点的横坐标为3,则下列结论:①k=6;②A点与B点关于原点O中心对称;③关于x的不等式<0的解集为x<﹣3或0<x<3;④若双曲线y=(k>0)上有一点C的纵坐标为6,则△AOC的面积为8,其中正确结论的个数()A.4个 B.3个 C.2个 D.1个7.“线段,等边三角形,圆,矩形,正六边形”这五个图形中,既是轴对称图形又是中心对称图形的个数有()A.5个B.4个C.3个D.2个8.三角形的两边分别2和6,第三边是方程x2-10x+21=0的解,则三角形周长为()A.11 B.15 C.11或15 D.不能确定9.一元二次方程的正根的个数是()A. B. C. D.不确定10.如图,菱形在第一象限内,,反比例函数的图象经过点,交边于点,若的面积为,则的值为()A. B. C. D.411.关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0的一个根为0,则m为()A.0 B.1 C.﹣1 D.1或﹣112.一元二次方程x2﹣3x﹣4=0的一次项系数是()A.1 B.﹣3 C.3 D.﹣4二、填空题(每题4分,共24分)13.已知反比例函数,在其位于第三像限内的图像上有一点M,从M点向y轴引垂线与y轴交于点N,连接M与坐标原点O,则ΔMNO面积是_____.14.如图,在平面直角坐标系xOy中,,,如果抛物线与线段AB有公共点,那么a的取值范围是______.15.如图,四边形ABCD中,AB∥CD,∠C=90°,AB=1,CD=2,BC=3,点P为BC边上一动点,若AP⊥DP,则BP的长为_____.16.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.17.如图,在中,,,点为边上一点,作于点,若,,则的值为____.18.已知以线段AC为对角线的四边形ABCD(它的四个顶点A,B,C,D按顺时针方向排列)中,AB=BC=CD,∠ABC=100°,∠CAD=40°,则∠BCD的度数为____________.三、解答题(共78分)19.(8分)计算:2cos45°tan30°cos30°+sin260°.20.(8分)如图,正方形ABCD的边长为2,点E是AD边上的动点,从点A开始沿AD向D运动.以BE为边,在BE的上方作正方形BEFG,EF交DC于点H,连接CG、BH.请探究:(1)线段AE与CG是否相等?请说明理由.(2)若设AE=x,DH=y,当x取何值时,y最大?最大值是多少?(3)当点E运动到AD的何位置时,△BEH∽△BAE?21.(8分)解下列方程:(1);(2)22.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线,且抛物线经过B(1,0),C(0,3)两点,与x轴交于点A.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴直线上找一点M,使点M到点B的距离与到点C的距离之和最小,求出点M的坐标;(3)如图2,点Q为直线AC上方抛物线上一点,若∠CBQ=45°,请求出点Q坐标.23.(10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2)若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.24.(10分)如图,在平面直角坐标系xOy中,曲线经过点A.(1)求曲线的表达式;(2)直线y=ax+3(a≠0)与曲线围成的封闭区域为图象G.①当时,直接写出图象G上的整数点个数是;(注:横,纵坐标均为整数的点称为整点,图象G包含边界.)②当图象G内只有3个整数点时,直接写出a的取值范围.25.(12分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,BE⊥AB,垂足为B,BE=CD连接CE,DE.(1)求证:四边形CDBE是矩形(2)若AC=2,∠ABC=30°,求DE的长26.如图,在△ABC中,AD是BC边上的高,tanB=cos∠DAC.(1)求证:AC=BD;(2)若sinC=,BC=12,求△ABC的面积.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】根据中心对称图形的概念判断即可.【题目详解】矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形.故选B.【题目点拨】本题考查了中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.2、A【分析】连接BE、AD,根据直径得出∠BEA=∠ADB=90°,求出∠ABE、∠DAB、∠DAC的度数,根据圆周角定理求出即可.【题目详解】解:连接BE、AD,

∵AB是圆的直径,

∴∠ADB=∠AEB=90°,

∴AD⊥BC,

∵AB=AC,∠C=70°,

∴∠ABD=∠C=70°.∠BAC=2∠BAD∴.∠BAC=2∠BAD=2(90°-70°)=40°,∵∠BAC+=90°

∴=50°.故选A.【题目点拨】本题考查了圆周角定理,等腰三角形的性质等知识,准确作出辅助线是解题的关键.3、D【分析】直接利用A,B点坐标得出AB的长,再利用位似图形的性质得出CD的长.【题目详解】解:∵A(6,6),B(8,2),∴AB==2,∵以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴线段CD的长为:×2=.故选:D.【题目点拨】本题考查了位似图形,解题的关键是熟悉位似图形的性质.4、A【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【题目详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【题目点拨】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.5、C【分析】根据两组对应角相等可判断△AEG∽△ACB,△AEF∽△ACD,再得出线段间的比例关系进行计算即可得出结果.【题目详解】解:(1)∵∠AEG=∠C,∠EAG=∠BAC,

∴△AEG∽△ACB.

∴.

∵∠EAF=∠CAD,∠AEF=∠C,

∴△AEF∽△ACD.

∴又,∴.∴故选C.【题目点拨】本题考查了相似三角形的判定,解答本题,要找到两组对应角相等,再利用相似的性质求线段的比值.6、A【分析】①由A点横坐标为3,代入正比例函数,可求得点A的坐标,继而求得k值;

②根据直线和双曲线的性质即可判断;

③结合图象,即可求得关于x的不等式<0的解集;

④过点C作CD⊥x轴于点D,过点A作AE⊥轴于点E,可得S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC,由点C的纵坐标为6,可求得点C的坐标,继而求得答案.【题目详解】①∵直线y=x与双曲线y=(k>0)交于A、B两点,A点的横坐标为3,∴点A的纵坐标为:y=×3=2,∴点A(3,2),∴k=3×2=6,故①正确;②∵直线y=x与双曲线y=(k>0)是中心对称图形,∴A点与B点关于原点O中心对称,故②正确;③∵直线y=x与双曲线y=(k>0)交于A、B两点,∴B(﹣3,﹣2),∴关于x的不等式<0的解集为:x<﹣3或0<x<3,故③正确;④过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,∵点C的纵坐标为6,∴把y=6代入y=得:x=1,∴点C(1,6),∴S△AOC=S△OCD+S梯形AEDC﹣S△AOE=S梯形AEDC=×(2+6)×(3﹣1)=8,故④正确;故选:A.【题目点拨】此题考查了反比例函数的性质、待定系数法求函数的解析式以及一次函数的性质等知识.此题难度较大,综合性很强,注意掌握数形结合思想的应用.7、B【解题分析】根据轴对称图形与中心对称图形的概念结合线段、等边三角形、圆、矩形、正六边形的性质求解.【题目详解】∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个.故答案为:B.【题目点拨】本题考查的知识点是中心对称图形与轴对称图形的概念,解题关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后原图形重合.8、B【题目详解】解:方程x2-10x+21=0,变形得:(x-3)(x-7)=0,解得:x1=3,x2=7,若x=3,三角形三边为2,3,6,不合题意,舍去,则三角形的周长为2+6+7=1.故选:B.9、B【分析】解法一:根据一元二次方程的解法直接求解判断正根的个数;解法二:先将一元二次方程化为一般式,再根据一元二次方程的根与系数的关系即可判断正根的个数.【题目详解】解:解法一:化为一般式得,,∵a=1,b=3,c=−4,则,∴方程有两个不相等的实数根,∴,即,,所以一元二次方程的正根的个数是1;解法二:化为一般式得,,,方程有两个不相等的实数根,,则、必为一正一负,所以一元二次方程的正根的个数是1;故选B.【题目点拨】本题考查了一元二次方程的解法,熟练掌握解一元二次方程的步骤是解题的关键;如果只判断正根或负根的个数,也可灵活运用一元二次方程的根与系数的关系进行判断.10、C【分析】过A作AE⊥x轴于E,设OE=,则AE=,OA=,即菱形边长为,再根据△AOD的面积等于菱形面积的一半建立方程可求出,利用点A的横纵坐标之积等于k即可求解.【题目详解】如图,过A作AE⊥x轴于E,设OE=,在Rt△AOE中,∠AOE=60°∴AE=,OA=∴A,菱形边长为由图可知S菱形AOCB=2S△AOD∴,即∴∴故选C.【题目点拨】本题考查了反比例函数与几何综合问题,利用特殊角度的三角函数值表示出菱形边长及A点坐标是解决本题的关键.11、C【分析】将0代入一元二次方程中建立一个关于m的一元二次方程,解方程即可,再根据一元二次方程的定义即可得出答案.【题目详解】解:依题意,得m2﹣1=0,且m﹣1≠0,解得m=﹣1.故选:C.【题目点拨】本题主要考查一元二次方程的根及一元二次方程的定义,准确的运算是解题的关键.12、B【解题分析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中bx叫一次项,系数是b,可直接得到答案.【题目详解】解:一次项是:未知数次数是1的项,故一次项是﹣3x,系数是:﹣3,故选:B.【题目点拨】此题考查的是求一元一次方程一般式中一次项系数,掌握一元一次方程的一般形式和一次项系数的定义是解决此题的关键.二、填空题(每题4分,共24分)13、3【分析】根据反比例函数系数k的几何意义得到:△MNO的面积为|k|,即可得出答案.【题目详解】∵反比例函数的解析式为,∴k=6,∵点M在反比例函数图象上,MN⊥y轴于N,∴S△MNO=|k|=3,故答案为:3【题目点拨】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.14、【解题分析】分别把A、B点的坐标代入得a的值,根据二次函数的性质得到a的取值范围.【题目详解】解:把代入得;把代入得,所以a的取值范围为.故答案为.【题目点拨】本题考查二次函数的图象与性质,解题的关键是熟练掌握二次函数的性质.15、1或2【分析】设BP=x,则PC=3-x,根据平行线的性质可得∠B=90°,根据同角的余角相等可得∠CDP=∠APB,即可证明△CDP∽△BPA,根据相似三角形的性质列方程求出x的值即可得答案.【题目详解】设BP=x,则PC=3-x,∵AB∥CD,∠C=90°,∴∠B=180°-∠C=90°,∴∠B=∠C,∵AP⊥DP,∴∠APB+∠DPC=90°,∵∠CDP+∠DPC=90°,∴∠CDP=∠APB,∴△CDP∽△BPA,∴,∵AB=1,CD=2,BC=3,∴,解得:x1=1,x2=2,∴BP的长为1或2,故答案为:1或2【题目点拨】此题考查的是相似三角形的判定及性质,掌握相似三角形的对应边成比例列方程是解题的关键.16、1【解题分析】连接BD.根据圆周角定理可得.【题目详解】解:如图,连接BD.∵AB是⊙O的直径,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案为1.【题目点拨】考核知识点:圆周角定理.理解定义是关键.17、【分析】作辅助线证明四边形DFCE是矩形,得DF=CE,根据角平分线证明∠ACD=∠CDE即可解题.【题目详解】解:过点D作DF⊥AC于F,∵,∴DF=3,∵,∴四边形DFCE是矩形,CE=DF=3,在Rt△DEC中,tan∠CDE==,∵∠ACD=∠CDE,∴=.【题目点拨】本题考查了三角函数的正切值求值,矩形的性质,中等难度,根据角平分线证明∠ACD=∠CDE是解题关键.18、80°或100°【解题分析】作出图形,证明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,分类讨论可得解.【题目详解】∵AB=BC,∠ABC=100°,∴∠1=∠2=∠CAD=40°,∴AD∥BC.点D的位置有两种情况:如图①,过点C分别作CE⊥AB于E,CF⊥AD于F,∵∠1=∠CAD,∴CE=CF,在Rt△ACE与Rt△ACF中,,∴Rt△ACE≌Rt△ACF,∴∠ACE=∠ACF.在Rt△BCE与Rt△DCF中,,∴Rt△BCE≌Rt△DCF,∴∠BCE=∠DCF,∴∠ACD=∠2=40°,∴∠BCD=80°;如图②,∵AD′∥BC,AB=CD′,∴四边形ABCD′是等腰梯形,∴∠BCD′=∠ABC=100°,综上所述,∠BCD=80°或100°,故答案为80°或100°.【题目点拨】本题考查了全等三角形的判定与性质,等腰梯形的判定与性质,本题关键是证明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,同时注意分类思想的应用.三、解答题(共78分)19、【分析】将特殊角的三角函数值代入求解.【题目详解】解:原式=﹣+=.【题目点拨】本题考查了特殊角的三角函数值,解答本题的关键是熟记特殊角的三角函数值.20、(1)AE=CG,见解析;(2)当x=1时,y有最大值,为;(3)当E点是AD的中点时,△BEH∽△BAE,见解析.【解题分析】(1)由正方形的性质可得AB=BC,BE=BG,∠ABC=∠EBG=90°,由“SAS”可证△ABE≌△CBG,可得AE=CG;(2)由正方形的性质可得∠A=∠D=∠FEB=90°,由余角的性质可得∠ABE=∠DEH,可得△ABE∽△DEH,可得,由二次函数的性质可求最大值;(3)当E点是AD的中点时,可得AE=1,DH=,可得,且∠A=∠FEB=90°,即可证△BEH∽△BAE.【题目详解】(1)AE=CG,理由如下:∵四边形ABCD,四边形BEFG是正方形,∴AB=BC,BE=BG,∠ABC=∠EBG=90°,∴∠ABE=∠CBG,且AB=BC,BE=BG,∴△ABE≌△CBG(SAS),∴AE=CG;(2)∵四边形ABCD,四边形BEFG是正方形,∴∠A=∠D=∠FEB=90°,∴∠AEB+∠ABE=90°,∠AEB+∠DEH=90°,∴∠ABE=∠DEH,又∵∠A=∠D,∴△ABE∽△DEH,∴,∴∴=,∴当x=1时,y有最大值为;(3)当E点是AD的中点时,△BEH∽△BAE,理由如下:∵E是AD中点,∴AE=1,∴又∵△ABE∽△DEH,∴,又∵,∴,且∠DAB=∠FEB=90°,∴△BEH∽△BAE.【题目点拨】本题是相似形综合题,考查了相似三角形的判定和性质,正方形的性质,二次函数的性质,灵活运用这些性质进行推理是本题的关键.21、(1)(2).【分析】(1)利用因式分解法解方程得出答案;(2)利用因式分解法解方程得出答案;【题目详解】(1)解得:(2)解得:【题目点拨】本题考查解一元二次方程-因式分解法,熟练掌握计算法则是解题关键.22、(1);(2)当点到点的距离与到点的距离之和最小时的坐标为;(3)点.【分析】(1)根据对称轴方程可得,把B、C坐标代入列方程组求出a、b、c的值即可得答案;(2)根据二次函数的对称性可得A点坐标,设直线AC与对称轴的交点为M,可得MB=MA,即可得出MB+MC=MC+MA=AC,为MB+MC的最小值,根据A、C坐标,利用待定系数法可求出直线AC的解析式,把x=-1代入求出y值,即可得点M的坐标.(3)设直线BQ交y轴于点H,过点作于点,利用勾股定理可求出BC的长,根据∠CBQ=45°可得HM=BM,利用∠OCB的正切函数可得CM=3HM,即可求出CM、HM的长,利用勾股定理可求出CH的长,即可得H点坐标,利用待定系数法可得直线BH的解析式,联立直线BQ与抛物线的解析式求出交点坐标即可得点Q坐标.【题目详解】(1)∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线,∴,∵抛物线经过B(1,0),C(0,3)两点,∴,解得:,∴抛物线解析式为.(2)设直线AC的解析式为y=mx+n,∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线,B(0,0),∴点A坐标为(-3,0),∵C(0,3),∴,解得:,∴直线解析式为,设直线与对称轴的交点为,∵点A与点B关于对称轴x=-1对称,∴MA=MB,∴MB+MC=MA+MC=AC,∴此时的值最小,当时,y=-1+3=2,∴当点到点的距离与到点的距离之和最小时的坐标为.(3)如图,设直线交轴于点,过点作于点,∵B(1,0),C(0,3),∴OB=1,OC=3,BC==,∴,∵∠CBQ=45°,∴△BHM是等腰直角三角形,∴HM=BM,∵tan∠OCB=,∴CM=3HM,∴BC=MB+CM=4HM=,解得:,∴CM=,∴CH==,∴OH=OC-CH=3-=,∴,设直线BH的解析式为:y=kx+b,∴,解得:,∴的表达式为:,联立直线BH与抛物线解析式得,解得:(舍去)或x=,当x=时,y==,∴点Q坐标为(,).【题目点拨】本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度,熟练掌握二次函数的性质是解题关键.23、(1)证明见解析;(2)①BP=;②BP=.【解题分析】试题分析:(1)根据已知条件易证△ACP∽△ABC,由相似三角形的性质即可证得结论;(2)①如图,作CQ∥BM交AB延长线于Q,设BP=x,则PQ=2x,易证△APC∽△ACQ,所以AC2=AP·AQ,由此列方程,解方程即可求得BP的长;②如图:作CQ⊥AB于点Q,作CP0=CP交AB于点P0,再证△AP0C∽△MPB,(2)的方法求得AP0的长,即可得BP的长.试题解析:(1)证明:∵∠ACP=∠B,∠BAC=∠CAP,∴△ACP∽△ABC,∴AC:AB=AP:AC,∴AC2=AP·AB;(2)①如图,作CQ∥BM交AB延长线于Q,设BP=x,则PQ=2x∵∠PBM=∠ACP,∠PAC=∠CAQ,∴△APC∽△ACQ,由AC2=AP·AQ得:22=(3-x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论