版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
XX设计(XX)外文资料翻译系别:专业:班级:姓名:学号:外文出处:IntJAdvManufTechnol附件:1.原文;2.译文20XX年01月IntJAdvManufTechnol(2001)17:649–6532001Springer-VerlagLondonLimitedReal-TimePredictionofWorkpieceErrorsforaCNCTurningCentre,Part1.MeasurementandIdentificationX.LiDepartmentofManufacturingEngineering,CityUniversityofHongKong,HongKongThispaperanalysestheerrorsourcesoftheworkpieceinbarturning,whichmainlyderivefromthegeometricerrorofmachinetools,i.e.thethermallyinducederror,theerrorarisingfrommachine–workpiece–toolsystemdeflectioninducedbythecuttingforces.Asimpleandlow-costcompactmeasuringsystemcombiningafinetouchsensorandQ-setterofmachinetools(FTSFQ)isdeveloped,andappliedtomeasurethework-piecedimensions.Anidentificationmethodforworkpieceerrorsisalsopresented.Theworkpieceerrorswhicharecomposedofthegeometricerror,thermalerror,andcuttingforceerrorcanbeidentifiedaccordingtothemeasurementresultsofeachstep.Themodelofthegeometricerrorofatwo-axisCNCturningcentreisestablishedrapidlybasedonthemeasurementresultsbyusinganFTSFQsetterandcoordinatemeasuringmachine(CMM).ExperimentalresultsshowthatthegeometricerrorcanbecompensatedbymodifiedNCcommandsinbarturning.Keywords:Dimensionmeasure;Erroridentification;Geo-metricerror;Turning1.IntroductionInrecentyears,ultraprecisionmachininghasmaderemarkableprogress.Somespeciallatheshavebeenabletomakeultra-precisionmachining,tolessthanasubmicronandnanomicrontolerancesapossibility.Acommonsecondapproachisthatthegrindingisusedtoachieveahighlevelofdimensionalaccuracyafterturning.However,theconditionofthecuttingtool(diamond)andworkpiece(aluminium)haverestrictedtheapplicationofultraprecisionlathes.Thesecondapproachincreasesthenumberofmachinetoolsandmachiningprocessesused[1],whichresultsinanincreaseinthemanufacturingcost.Atpresent,mostCNClathesareequippedwithapositioningresolutionof1urm.Variousmachiningerrorsinfinishturning,however,degradetheaccuracytoalevelofapproximately10urm,sothatwhenturningcarbonsteel,amachiningerrorpredictablyarisesinexcessof20–30urm.Forimprovingmach-iningaccuracy,themethodofcarefuldesignandmanufacturehasbeenextensivelyusedinsomeCNClathes.However,themanufacturingcostbasedontheabovemethodwillrapidlyincreasewhentheaccuracyrequirementsofthemachinetoolsystemareincreasedbeyondacertainlevel.Forfurtherimprov-ingmachineaccuracycost-effectively,real-timeerrorpredictionandcompensationbasedonsensing,modellingandcontroltechniqueshavebeenwidelystudied[2],soultraprecisionandfinishtuningcanbeperformedononeCNClathe.Thepositioningresolutionofthecuttingtoolsandworkpieceisreducedsothatitcannotmaintainhighaccuracyduringmachiningbecauseofthecutting-force-induceddeflectionofthemachine–workpiece–toolsystem,andthethermallyinducederror,etc.Ingeneral,apositioningdeviceusingapiezo-eletricactuatorisusedtoimprovetheworkingaccuracy,butthemethodintroducessomeproblems,suchas,thefeedbackstrat-egy,andtheaccuracyofsensors,whichaddtothemanufactur-ingcostoftheproducts.However,iftheworkpieceerrorcanbemeasuredbyusingameasuringinstrument,orpredictedbyusingamodelling,theturningprogramproducedbymodifiedNCcommandscanbeexecutedsatisfactorilyonaCNCmachinetool.Thus,aCNCturningcentrecancompensateforthenormalmachiningerror,i.e.themachinetoolcanmachineaproductwithahighlevelofaccuracyusingmodifiedNCcommands,inrealtime.Theworkpieceerrorderivesfromtheerrorintherelativemovementbetweenthecuttingtoolandtheidealworkpiece.Foratwo-axisturningcentre,thisrelativeerrorvariesastheconditionofthecuttingprogresses,e.g.thethermaldeflectionofthemachinetoolistimevariant,whichresultsindifferentthermalerrors.Accordingtothevariouscharactersoftheerrorsourcesoftheworkpiece,theworkpieceerrorscanbeclassifiedasgeometricerror,thermallyinducederror,andcutting-force-inducederror.Themainaffectingfactorsincludethepositionerrorsofthecomponentsofthemachinetoolandtheangularerrorsofthemachinestructure,i.e.thegeometricerror.Thethermallyinducederrorsofthemachinetool(i.e.thethermalerror),andthedeflectionofthemachiningsystem(includingthemachinetools,workpiece,andcuttingtools)arisingfromcuttingforces,arecalledthecutting-forceerror.Thispaperanalysestheworkpieceerrorsourcesinturning.Theerrorsofamachinedworkpiecearemainlycomposedofthegeometricerrorofthemachinetools,thethermallyinducederror,andtheerrorarisingfrommachine–workpiece–toolsys-temdeflectioninducedbythecuttingforces.Asimpleandlow-costmeasuringinstrumentfortheworkpiecedimensions,whichcombinesafinetouchsensorandmachinetoolQ-setter(FTSFQ),isdescribed,andappliedtomeasuretheworkpieceerror.Anewmethodforidentifyingthegeometricerror,thethermalerror,andthecutting-forceerrorisalsopresentedforatwo-axisturningcentre.Finally,themodellingofthegeo-metricerrorofaCNCturningcentreispresented,basedonthemeasurementresultsusingtheFTSFQandCMM.ThegeometricerrorcanbecompensatedbythemodifiedNCcommandmethod.2.ErrorSourcesinTurningThemachinetoolsystemiscomposedofthedriveservo,themachinetoolstructure,theworkpieceandthecuttingprocess.Themajorerrorsourcesderivefromthemachinetool(thermalerrors,geometricerrors,andforcedvibrations),thecontrol(driveservodynamicsandprogrammingerrors)andthecuttingprocess(machinetoolandcuttingtooldeflection,workpiecedeflection,toolwear,andchatter)[3].Errorsderivedfromthemachinetoolincludethermalerrors(machinethermalerrorandworkpiecethermalerrors),geo-metricerrors,andforcedvibrations,whichdominatemachiningaccuracy.Thethermalerrorsandgeometricerrorsarethedominantfactorswithrespecttomachiningaccuracyinfinecutting.However,machinetoolerrorscanbedecoupledfromtheothererrorsourcesandcompensated[4].Theerrorderivedfromforcedvibrationcanbereducedthroughbalanceddynamiccomponentsandvibrationisolation[3].Theerrorsderivedfromthecontroller/drivedynamicsarerelatedtothecuttingforcedisturbancesandtheinertiaofthedriveandthemachinetable.Theseerrorscanbereducedbyaninterpolatorwithadecelerationfunction[5]orbyanadvancedfeeddrivecontroller[6],theseerrors,reducedbyusingtheabovemethods,aresmallwhencomparedwithothererrorsources.Owingtothedemandforhighproductivity,highfeedratesandlargedepthsofcutarerequired,whichresultinlargecuttingforces.Therefore,thecutting-forceinduceddeflectionsofthemachinetool(spindle),toolholder,workpiece,andcuttingtoolmakesignificantcontributionstomachiningaccu-racyduringthecuttingprocess.Inaddition,toolwearandmachinetoolchatterarealsoimportanterrorsourcesinthecuttingprocess.However,theseeffectsareneglectedheresoastofocusonthemainerrorsources.Inshort,theerrorofamachinedworkpiece,i.e.thetotalmachiningerror(iTot),iscomposedmainlyofthegeometricerrorsofthemachinetool(s)(i),thethermallyinducederror(iT),andtheerror(i)arisingfromthedeflectionofthelmdyegHence,iTotiG+iT+iF (1)Inthenextsection,wepresentanovelcompactmeasuringinstrumentandanewanalyticalapproachformeasuringandidentifyingworkpieceerrorsinturning.3.ACompactMeasurementSystemContactsensors,suchastouchtriggerprobes,havebeenusedtomeasureworkpiecedimensionsinmachining.Inmachiningpractice,themeasuringinstrumentisattachedtooneofthemachine’saxestomeasureasurfaceontheworkpiece.ATP7MorMP3associatedwiththePH10MrangeofmotorisedprobeheadsoraPH6MfixedheadhavebeenusedwidelyintheautomatedCNCinspectionenvironmentowingtotheirhighlevelofreliabilityandaccuracyandintegralautojoint.Thoughtheprobeheadsareofadequateaccuracy(unidirectionalrepeatabilityatstylustip(highsensitivity):0.25urm;pre-travelvariation360(highsensitivity):±0.25urm),andversatileinapplication,theyhavecleardrawbacks,includingcomplexityofconstruction,highprice($4988),andtheneedforcarefulmaintenance.Toovercomethesedrawbacksoftouchtriggerprobes,Ostafievetal.[7]presentedanoveltechniqueofcontactprobingfordesigningafinetouchsensor.Thecuttingtoolitselfisusedasacontactprobe.Thesensoriscapableofyieldingmeasurementaccuracycomparabletothatofthebesttouchtriggerprobeinuse.Moreover,theprincipleofoperationandconstructionofthesensorisextremelysimple,thecostofthesensorislow,andthemaintenanceisveryeasy.Inthispaper,thissensorwillbeusedtomeasurethediameterofaworkpieceassociatedwiththeQ-setter.AtouchsensorismountedonaCNCturningcentre.Whenwemanuallybringthetoolnoseintocontactwithit,aninterruptsignalisgeneratedfortheNCunittostopanaxis.Moreover,itcanwriteinanoffsetandaworkpiececoordinateshiftautomatically.Thisfunctionfacilitatesset-upwhenreplac-ingatool,andthisconvenientfunctioniscalledthe“QuickToolSetter”or“Q-setter”.Basedontheaboveprinciple,wecanoperateaswitch,whichiscontrolledbyfinetouchsensor,betweentheQ-setterandNCunit.Whenthetooltiptouchestheworkpiecesurface,thefinetouchsensorcansendacontrolsignaltotheswitch,toturnittothe“off”state.SeeFig.1,thefinetouchsensorreplacestheQ-setterfunction,tostopanaxisandwriteinanoffsetandaworkpiececoordinateshiftautomatically.Therefore,thefinetouchsensorassociatedwithFig.1.FlowdiagramofafinetouchsensorfixedonaCNCcontrolleraQ-setter(FTSFQ)canbeusedtoinspectthediameteroftheworkpiece,themethodisshowninFig.2.Whenthecuttingtooltiptouchestheworkpiecesurface,a“beep”soundisheardandtheswitching“OFF”signalappearsandtheaxisstopsautomatically,asfartheQ-setter.Anew“tooloffset”T-WisobtainedbytheNCunit(displayofCNC).Beforetouchingtheworkpiecesurface,thecuttingtooltiptouchestheQ-setter,andthe“tooloffset”T-Qisobtained.Thus,theon-machineworkpiecediameteron-machineisgivenbythefollowingEq.:Don-machine2H+XT-QXT- (2)whereXT-QisthetooloffsetwhenthecuttingtoolcontactstheQ-setterXT-Wisthe“tooloffset”whenthecuttingtoolcontactstheworkpiecesurfaceHisthedistancefromthecentreoftheQ-settertothecentreofthespindleinthex-axisdirectionandisprovidedbythemachinetoolmanufacturer,fortheSeiki-SeicosLIITurningcentre,itis85.356mm.OstafievandVenuvinod[8]testedthemeasurementaccuracyofthefinetouchsensor,performingon-machineinspectionofturnedparts,andfoundthatthemethodwascapableofachiev-ingameasurementaccuracyoftheorderof0.01urmundershopfloorconditions.However,themeasurementaccuracyofthefinetouchsensortogetherwiththeQ-setterobtainedanaccuracyofabouturmbecausetheresultsofthemeasurementsystemaredisplayedbytheCNCsystem,andthereadingsaccuracyoftheCNCsystemisupto1urm.4.IdentificationofWorkpieceErrorsFromtheaboveanalysisoferrorsourcesoftheworkpiece,thetotalerroriTotofmachinedpartsismainlycomposedofthefollowingerrorsinaturningoperation:.iGthegeometricerrorsofmachinetools..iTthethermallyinducederror.Fig.2.InspectionforthediameterofaworkpiecebyusingthefinetouchsensorwiththeQ-setterofamachinetool..iFthecuttingforceinducederror.Toanalysetheerrorsourcesofamachinedworkpiece,Liu&Venuvinod[9]usedFig.3toillustratetherelationshipamongstdimensionsassociatedwithdifferenterrorcomponentsinturning.InFig.3,desisthedesireddimensionoftheworkpiece;omwisthedimensionobtainedbyon-machinemeasurementusingFTSFQimmediatelyafterthemachiningoperation;omcisthedimensionobtainedbyon-machinemeasurementusingFTSFQafterthemachinehascooleddown;andppisthedimensionobtainedbypost-processprocessmeasurementusingaCMMaftertheworkpiecehasbeenremovedfromthemachine.Whentheworkpiecehasbeenmachined,andremovedfromthemachinetoolsystem,itisthensentforinspectionofthedimensionsusingaCMM.Thisprocedureiscalledpost-processinspection,bywhichweobtainitppvalue.AsthepositioningerroroftheCMMisverymuchsmallerthanthedesiredmeasurementaccuracy,thetotalerrorisiTot(ppDde)/2 (3)ThedimensionDomwisobtainedthroughon-machinemeasurementusingFTSFQimmediatelyaftermachining,i.e.themachineisstillinthesamethermalstateasatthetimeofmachining.Themeasurementismadewiththesamepositioningerrorasthatwhichexistedduringmachining.Hence,thepositioningerrorinthisstatewouldbeequalto(iG+iT),i.e.(ppDom)/2iG+iT (4)Whenthemachinehascompletelycooleddown,i.e.withoutthermalerror,thedimensionomccanbeobtainedbyon-machinemeasurementusingFTSFQ.Themeasurementhasapositioningerrorequaltothegeometricerrorofthemachineatthelocationofmeasurement.Hence,thepositioningerrorinthisstatewouldbeequalto(i),i.e.(ppDom)/2iG (5)CombiningEqs(4)and(5),thethermallyinducederroriTis(omcom)/2iT (6)Hence,takingEqs(1),(3),and(4)intoaccount,thecutting-force-inducederrorowningtothedeflectionofthemachine–workpiece–toolsystemiFis(omwdes)/2iF (7)Fig.3.Therelationshipsamongdimensions.Sofar,themachiningerroriscomposedofthegeometricerror,thethermalerror,andthecutting-force-inducederrorandcanbeidentifiedusingtheaboveprocedure.Thethermalerrorandtheforce-inducederrormodellingsisaddressedinLi[10].Here,thegeometricerrorofmachinetoolismeasuredandmodelled.5.ModellingofGeometricErrorThegeometricerrorofaworkpieceismainlyaffectedbytheoffsetofthespindle,andthelinearerrorandtheangularerrorsofthecross-slideforatwo-axisCNCturningcentre.Here,onlythegeometricerrorofworkpieceinthex-axisdirectionistakenintoaccountforabarworkpiece.Thisisexpressedbythefollowingformula.iGi(s)€(x)hT-Qix(x) (8)wherei(s)isthespindleoffsetalongthex-axisdirection€(x)istheangularerror(yaw)ofthecross-slideinthex,y-planeix(x)isthelineardisplacementerrorofthecross-slidealongthex-axisdirectionThespindleoffsetisaconstantvalueindependentofthethemachiningposition.Theangularerrortermandthelinearerrortermarefunctionsofthecross-slidepositionx.Inthispaper,theFTSFQismountedonaHitachiSeiiki,HITEC-TURN20SIItwo-axisturningcentre.TheFTSFQcali-brationinstrumentwasdevelopedtomeasurerapidlythedimen-sionoftheworkpieceinthex-axisdirectiononthetwo-axisCNCturningcentrewhenthemachinehascompletelycooleddown,i.e.withouttheeffectofthermalerror.ThegeometricerrorcanbecomputedbyusingEq.(5)accordingtothemeasuredresults.First,thediameterofaprecisiongroundtestbarismeasuredat10positions,20mmapart,byaCMM,theirvaluesppi(i1,2,...,10)arerecorded.Then,thetestbarismountedonthespindle,anditsdiameterisalsomeasuredat10positions,20mmapart,bytheFTSFQ.ThemeasurementarrangementisshowninFig.4,thereadingsareDomcl(i1,2,...,10).Thus,thegeometricerrorateachpointalongthex-axisforthebarworkpiecearecomputedasfollows:iGi(ppiGi)/2 (9)FromstartingpointBtopointA,theresultsareshowninFig.5fordiametersof30,45,60,and75mm.TheworkpieceFig.4.DiagramofthegeometricerrormeasurementoftheworkpieceusingFTSFQ.Fig.5.Geometricerrorsoftheworkpiecealongthez-axis.geometricerrorsinthez-axisdirectionarethesame.Theworkpiecegeometricerrors,however,increasealongthex-axisdirection,asshowninFig.6.Theseaveragegeometricerrorsare—7.1036,—9.0636,—10.7764,—12.5955(urm)fordia-meters30,45,60,and75mm,respectively.Hence,thegeo-metricerrorsofthetwo-axisCNCturningcentrecanbecalculatedbythefollowingEq.:i(x)0.121x3.519 (10)wherexisthediameteroftheworkpiece(mm),i(x)(urm)isthegeometricerroroftheworkpiece.6.CompensationofGeometricErrorTocompensateforthegeometricerrorinthedirectionofthedepthofcut,thetoolpathcanbeshiftedinaccordancewiththeerror.TheNCcommandsinturningaremodified,ataminimumresolution1urm,inthedirectionofthedepthofcut.Thecalculatedgeometricerrorexceeded1urmaccordingtotheequation(10),asillustratedinFig7.Figure8showsthattheworkpieceerrorsincludethegeo-metricerror,thethermalerrorandthecuttingforceerror.Thetoolpathdeterminedbythecalculatedgeometricerror,andtheworkpieceerrorarecompensatedforbythemodifiedNCcommandmethod.Inthisexample,weusedacuttingspeedof4ms—,afeedrateof0.2mmre—1,adepthofcutofFig.6.TheaveragegeometricerrorforthedifferentdiametersFig.7.Compensationofgeometricerror.Fig.8.CompensationofgeometricerrorbyamodifiedNCcommand.1mm(cuttinglength100mm),adiameterof40mm,mildsteelworkpieces,andDNMG150604QMtools.Thework-pieceerrorwasmeasuredusingourFTSFQat10positions10mmapart.Theworkpieceerrorswerereducedbymeansofthecompensationofthegeometricerror.Theremainingwork-pieceerrorcontainsthethermalerrorandcuttingforceerror,thesewillbediscussedinpart2[10]andpart4[11].Experi-mentalresultssuggestthatthegeometricerrorinfinishturningcanbecompensatedforbytheuseofthissimplemethoddescribedabove.7.ConclusionsOwingtoincreasingdemandforhigherprecisioncoupledwithlowercostsinthemachiningindustry,thereisagrowingneedforautomatedtechniquesleadingtoenhancedmachiningaccuracy.Inthispaper,theworkpieceerrorsourcesareana-lysedforatwo-axisCNCturningcentre,whichderivemainlyfromthegeometricerrorofthemachinetool,thethermallyinducederror,andtheerrorarisingfromMFWTsystemdeflec-tioninducedbythecuttingforces.Asimpleandlow-costmeasuringsystemcombiningafinetouchsensorandQ-setterformachinetools(FTSFQ)isdevelopedtomeasurethework-pieceerroron-machine.Theworkpieceerrorscanbedividedintothegeometricerror,thethermalerror,andthecuttingforceerrorfromtheon-machineandpost-processmeasuredresults.Thegeometricerrorfunctionofatwo-axisCNCturningcentrecanbeestablishedrapidlyfromthemeasurementsbyusingtheFTSFQandaCMM.ExperimentalresultsshowthegeometricerrorcanbecompensatedforbythemodifyingtheNCcommandsinfinishturning.References1.T.Asao,Y.MizugakiandM.Sakamoto,“Precisionturningbymeansofasimplifiedpredictivefunctionofmachiningerror”,AnnalsCIRP,41(1),pp.447–451,1992.2.JingxiaYuanandJunNi,“Thereal-timeerrorcompensationtechniqueforCNCmachiningsystems”,Mechatronics,8(4),pp.359–380,1998.3.Sung-GwangChen,A.GalipUlsoyandYoramKoren,“Errorsourcediagnosticusingaturningprocesssimulator”,TransactionsASMEJournalofManufacturingScienceandEngineering,120,pp.409–416,1998.4.V.S.B.KiridenaandP.M.Ferreira,“Modelingandestimationofquasistaticmachine-toolerror”,TransactionsNAMRI/SME,pp.211–221,1991.5.Y.Koren,ComputerControlofManufacturingSystems,McGraw-Hill,1983.6.Y.KorenandC.C.Lo,“Advancedcontrollersforfeeddrives”,AnnalsCIRP,41(2),pp.689–698,1992.7.V.Ostafiev,I.MasolandG.Timchik,“Multiparametersintelligentmonitoringsystemforturning”,ProceedingsofSMEInternationalConference,LasVegas,Nevada,pp.296–300,1991.8.V.A.OstafievandPatriK.Venuvinod,“Anewelectromagneticcontactsensingtechniqueforenhancingmachiningaccuracy”.IMECE-97,ASME,1997.9.Z.Q.LiuandPatriK.Venuvinod,“ErrorcompensationinCNCturningsolelyfromdimensionalmeasurementsofpreviouslymachinedparts”,AnnalsCIRP,48(1),pp.429–432,1999.10.X.Li,“Real-timePredictionofworkpieceerrorsforaCNCturningcentre.Part2.Modellingandestimationofthermallyinducederrors”,InternationalJournalofAdvancedManufacturingTechnology,2000.11.X.Li,“Real-timepredictionofworkpieceerrorsforaCNCturningcentre.Part4.Cutting-force-inducederrors”,InternationalJournalofAdvancedManufacturingTechnology,2000.期刊或杂志名:IntJAdvManufTechnol出版社:Springer-VerlagLondonLimited出版时间:2001数控车削中心工件误差实时预报第1部分:测量和鉴定李小俚制造工程系,香港城市大学,香港本文分析了工件在加工旋转时的误差来源,其中主要来自机加工工具的几何误差,即热误差,该误差产生于机加工工件的切削力引起的刀具系统的偏转。一个简单和低成本的紧凑型测量系统相结合的灵敏的触摸传感器的工具(FTS-Q)产生了,并应用于测量工件表面.并且还介绍了一种识别工件误差的方法。工件的误差是由几何误差,热误差组成的,而切屑力误差根据每一步的测量结果是可以确定的。几何误差由建立在快速的基础上的两轴CNC车削中心模型测量,测量结果由坐标测量机(CMM)用FTS-Q的方法显示出来。实验结果表明,在工具旋转时,通过修改数控指令,这种几何误差可以得到补偿。关键词:尺寸测量;错误辨识;几何误差;旋转导言近年来,超精密加工已取得了显著进展,一些特殊的车床已能作出超一般的机械加工,实现了不到1微米,甚至有实现超微米的可能性。而实现这种可能公用的一种方法是在开机后用高水平的三维来实现磨削的准确性。然而,有些切削工具(如钻石)和一些工件(如铝)应限制应用超精密车床。第二种实现的方法是增加机床数目的加工工艺,但是这将导致制造成本的增加。
目前,我国大部分CNC车床配备定位达到了1微米。然而,在完成车削时,各种加工误差的准确性应以某种程度的降低约10微米,所以,当谈到碳钢时,加工误差可以预见超出20-30微米。为提高加工的准确性,这种精心设计的方法和制造已被广泛应用于一些CNC车床。然而按以上方法制造精度要求系统超出一般水平的机床时,生产的成本将会迅速的增加。为了进一步改善提高机床精度的效益成本,实时的误差预报以及基于传感的补偿建模与控制技术已得到了广泛的研究,因此,超精密的加工校正,可以安排在一般的CNC车床。定位解决了刀具和工件的切削,但它不能保证高度的准确性,因为在加工中,切削力会影响机床-工件-刀具系统,并且热也会导致误差等。一般来说,定位装置采用压电激励器,用于改善工作的准确性,但是,采用这种方法也带来了一些问题,例如反馈系统和精度传感器,这些都会增加制造产品的成本。但是如果工件的误差可以用测量仪器测量,或者利用模型可以提前预知,再执行已经做好的修饰数控命令,那么将会充分利用好数控机床。因此,在一定时间内,这种数控车削中心可以补偿一般的加工误差,即这种机床采用可改性数控命令能制造出具有高水平精确度的产品。工件的误差来自刀具和工件的实际相对运动与理想相对运动的误差。如果是双轴车削中心,由于车削条件不同,导致相对误差各不相同,如机床刀具的时变产生热偏转,导致不同的热误差。根据工件各种不同误差来源,工件误差可分为几何误差,热误差,以及切削疲惫误差。主要影响因素包括:组成机床部分的位置错误和机械结构的角错误,即几何误差。这种由于切削力产生的机床热误差(即热误差),和影响的加工系统(包括机床,工件和刀具),被称为切力误差。本文分析了工件在加工旋转时误差的来源:数控机床的几何误差,热误差,切削力产生的机械工件和刀具系统的偏离误差。一个简单而低成本的测量仪器,它具有良好的触摸传感器和机床的FTSF-Q装置,能描述工件的尺寸,并用于测量工件的误差。已经有一种新的方法来确定几何误差,热误差,并且能够回馈切力误差到两轴车削中心。最后,数控车削中心的造型几何误差由FTSF-Q和CMM来测定。这种几何误差可以由改进的数控指挥得到补偿。2.车削加工中的误差来源机床系统是由驱动伺服,机床结构,工件和切削过程组成。主要误差源来自机床(热误差,几何误差,和强迫振动),控制(伺服驱动器动力学及编程错误),以及切割进程(机床及刀具偏转,工件偏转,刀具磨损和颤振)。其中对加工的准确性占主导地位的误差来自机床,包括热误差(机床热误差和工件的热误差),几何误差和强迫振动。在加工精细工件时热误差和几何误差是主要的影响因素。然而,机床误差不同与其他误差来源,它可以得到补偿。均衡动态部件以及隔离振动可以减少由误差衍生来的强迫振动。控制器和驱动器的误差来自切削力的干扰和机座的惯性,这些误差可能减少一个接一个减速器的功能,或者一个先进的伺服驱动控制器,这些误差,相对于其他误差来源,利用上述方法可以在他们较小时得到减少。由于需求大,生产率高,等级要求自由和大深度的削减要求,而导致产生较大切削力。因此,割力诱导挠度来自机床(主轴),刀柄,工件,并且刀具在加工精度切削过程起了重要作用。此外,在切削过程,刀具磨损和机床颤振,亦是重要的误差来源。不过,这些影响可以忽略,所以在这里把焦点放在主要误差来源。总之,加工一个工件的误差,即总加工误差(),主要由机床几何误差(),热误差(),以及由切削力所产生的机床-工件-刀具系统的挠度诱导误差()组成,故:≈++(1)在下一节中,我们提出一个新的紧凑型测量仪器和新的分析方法来衡量和确定工件的旋转误差。3.紧凑型测量系统接触传感器,例如触摸触发探针,已用于测量工件尺寸加工。在加工实践中,测量仪器是附在机器其中的轴,以衡量一个工件的表面。一种tp7m或是MP3与ph10m各种机动探头元件或ph6m固定头由于其高的可靠性和准确性以及完整的加工点,广泛应用于自动化数控视察环境。虽然该探头有足够的精确度(针式特有的单项重复性(高灵敏度):0.25微米;提前可设定的旋转360(高灵敏度):0.25微米),并且可进行多种功能,他们也有明显的缺点,例如制造的复杂性,高价格(4988美元),以及复杂的维修。为了克服这些缺点,Ostafiev等人介绍了一种技术并以此设计了一个良好的触摸传感器:触摸触发探头,该传感器刀具本身就作为探针。该传感器的测量精度是当年触摸触发探头最好的。此外练习使用这种传感器是非常简单的,制造成本很低,而且维修保养是非常容易的。在本文中这个传感器将作为Q装置来测量工件直径等一些相关的问题。触摸感应器应安装在一个数控车削中心上。作为数控单元,当我们手动把刀尖触碰到主轴时,它会产生中断信号。此外,它可以记录一个工件自动转向的坐标。这种功能方便随时更换刀具。因此,拥有这种功能称为“快速换刀装置”或“Q装置”。基于上述原则,我们可以设计一个由良好的触摸传感器构成的开关,控制Q装置和NC单元。当刀尖触及工件表面,精细式触摸传感器能发出一个控制信号转换,使之向"关闭"状态。见图1。优良式触摸传感器取代了问答式的Q装置功能,以防止轴在记录的工件坐标间偏移。图1触摸传感器固定在一个CNC控制器的流程图因此,优良的触摸传感器如图1,流程图的数据由触摸传感器即固定的Q装置(FTSFQ)测得,可以用来检查工件直径,该方法是图2.当刀具尖端触及工件表面时,将发出“哔哔”的声音,这是开关的“关”的信号,主轴将根据Q装置自动停止。一个新的“刀具补偿”将由NC单元提供(展示数控)。在触及工件表面前,刀具尖端触及Q装置以及“刀具补偿”就已经获得。因此,对于工件直径有下列关系:=2H+(2)其中::刀具切削时Q装置提供的刀具补偿;:刀具触及工件表面时的刀具补偿;H是Q装置在X轴方向上离主轴的距离。这由机床制造商提供,如Seiki-SeicosLII旋转中心,它是85.356毫米。Ostafiev和Venuvinod两款触摸传感器在测试测量精度时,在演示机上能够测量精度在0.01微米以下的精度条件。然而,优良的触摸传感器在测量精度时获得的精度为微米,因为测量结果在系统中显示出来时,数控系统和读数精度系统最大是1微米。4.确定工件的错误上述分析中工件的误差源的总误差主要由以下在加工零件车削操作中的误差组成::的机床的几何误差。:热引起的错误。:切削力引起误差。图2使用Q-setter的机床利用优良的触摸传感器对工件的直径进行检查要分析一个加工工件的误差源,刘&Venuvinod。图3用来说明在车削时不同的误差分量之间的尺寸关系。另外,在图3中,是所希望的工件尺寸;是在测量使用FTSFQ加工操作后立即获得的维度;是在机床FTSFQ加工操作后冷却下来测量获得的尺寸,使用三坐标测量机测量已经从机器上取下的工件通过处理后获得的尺寸。当工件被加工时,机床系统中使用CMM的尺寸进行检查。此过程被称为后工序检验,由于CMM的定位误差比所需的测量精度更小,总误差是:=(-)/2 (3)通过以上获得的尺寸,使用FTSFQ测量后立即加工,即机器在加工时仍然在相同的热状态。测量时,在加工过程中具有相同的定位误差。因此,在该状态下的定位误差将等于(+),i.e.(—)/2=+(4)当机器完全冷却下来,即无热误差时,尺寸可以通过FTSFQ测量。测量等于测量的位置处机器具有的几何误差的定位误差。因此,在该状态下的定位误差将是(),即等于()/2= (5)结合式(4)和(5),热诱导的错误,它是()/2= (6)故,以式(1),(3)和(4)考虑到,如果是机器的工件的刀具系统偏转切割力引起的误差,是:(-)/2= (7)图3维之间的关系到目前为止,由加工误差的几何误差,热误差和切割力引起的误差,可以使用上述步骤来识别。这里,机床的几何误差的测量和模拟解决热误差和力引起的错误构模。5.模型的几何误差两轴CNC车削中心滑动、主轴偏移的工件的几何误差主要由线性误差和角度误差交叉的影响。这里,仅在x轴方向上的工件的几何误差是由以下结构式表示:=—€(x)- (8)其中::十字滑块在x,y平面沿x轴方向€(x)的偏移量是主轴的转角误差;:十字滑块沿x轴方向的线性位移误差;独立的加工位置主轴偏移量是一个恒定值,转角误差项和线性误差项是十字滑块的位置x的函数。在本文中,国际展贸中心将FTSFQ安装在日立Seiiki开发的FTSFQ校准仪器上,用来进行20SII两轴车削加工中心快速测量工件中的x轴方向上的两轴CNC车削中心,当该装置已经完全冷却下来的维
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 万能补充协议
- 足底发麻病因介绍
- (2024)高速吹膜机项目可行性研究报告备案申请模板(一)
- 云南省曲靖市沾益区2024-2025学年七年级9月月考道德与法治试题(原卷版)-A4
- 2024秋新沪科版物理8年级上册教学课件 第6章 熟悉而陌生的力 第4节 探究:滑动摩擦力大小与哪里因素有关
- 2023年智能电能表及配件项目融资计划书
- 2023年原料药机械及设备项目融资计划书
- 《OJT推进与实施》课件
- 《珠心算基本功训练》课件
- 湖北省黄石市大冶市2023-2024学年七年级上学期期末考试数学试卷(含答案)
- 2023年钢制门安装技术施工方案
- 香文化与养生知到章节答案智慧树2023年浙江农林大学
- 嵩县嵩源矿业有限公司嵩县金矿矿产资源开采与生态修复方案
- 跨文化交际学知到章节答案智慧树2023年大连外国语大学
- 2023河南对口高考计算机类基础课试题
- 农产品质量安全检测机构考核评审细则
- 广告策划与创意课件改
- 国开电大本科《管理英语3》机考真题(第五套)
- 肺癌的临床表现及治疗
- GB/T 9722-2006化学试剂气相色谱法通则
- GB/T 7631.5-1989润滑剂和有关产品(L类)的分类第5部分:M组(金属加工)
评论
0/150
提交评论