版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省潮州市名校九年级数学第一学期期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.小明同学对数据26,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则分析结果与被涂污数字无关的是()A.平均数 B.方差 C.中位数 D.众数2.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40° B.50° C.65° D.75°3.在中,点在线段上,请添加一个条件使,则下列条件中一定正确的是()A. B.C. D.4.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.105.某学习小组在研究函数y=x3﹣2x的图象与性质时,列表、描点画出了图象.结合图象,可以“看出”x3﹣2x=2实数根的个数为()A.1 B.2 C.3 D.46.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗 B.2颗 C.3颗 D.4颗7.如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A. B. C.2 D.28.⊙O的半径为5cm,弦AB//CD,且AB=8cm,CD=6cm,则AB与CD之间的距离为()A.1cm B.7cm C.3cm或4cm D.1cm或7cm9.如图,在平行四边形ABCD中,点E在DC边上,连接AE,交BD于点F,若DE:EC=2:1,则△DEF的面积与△BAF的面积之比为()A.1:4 B.4:9 C.9:4 D.2:310.如图,是的直径,且,是上一点,将弧沿直线翻折,若翻折后的圆弧恰好经过点,取,,,那么由线段、和弧所围成的曲边三角形的面积与下列四个数值最接近的是()A.3.2 B.3.6 C.3.8 D.4.2二、填空题(每小题3分,共24分)11.计算:________.12.若关于x的一元二次方程x2+2x+3k=0有两个不相等的实数根,则k的取值范围是_____.13.在中,若、满足,则为________三角形.14.根据下列统计图,回答问题:该超市10月份的水果类销售额___________11月份的水果类销售额(请从“>”“=”或“<”中选一个填空).15.抛物线y=﹣(x+)2﹣3的顶点坐标是_____.16.已知反比例函数,当时,随的增大而增大,则的取值范围为_______.17.将矩形纸片ABCD按如下步骤进行操作:(1)如图1,先将纸片对折,使BC和AD重合,得到折痕EF;(2)如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O.那么点O到边AB的距离与点O到边CD的距离的比值是_____.18.如图,一飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_____.三、解答题(共66分)19.(10分)在矩形ABCD中,AB=3,BC=4,E,F是对角线AC上的两个动点,分别从A,C同时出发相向而行,速度均为1cm/s,运动时间为t秒,0≤t≤1.(1)AE=________,EF=__________(2)若G,H分别是AB,DC中点,求证:四边形EGFH是平行四边形.(相遇时除外)(3)在(2)条件下,当t为何值时,四边形EGFH为矩形.20.(6分)如图,海中有一个小岛,它的周围海里内有暗礁,今有货船由西向东航行,开始在岛南偏西的处,往东航行海里后到达该岛南偏西的处后,货船继续向东航行,你认为货船在航行途中有没有触礁的危险.21.(6分)已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).(1)则b=,c=;(2)该二次函数图象与y轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x<2时,y的取值范围是.22.(8分)用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求(-2)☆3的值;(2)若=8,求a的值.23.(8分)如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.24.(8分)(阅读材料)某校九年级数学课外兴趣探究小组在学习完《第二十八章锐角三角函数》后,利用所学知识进行深度探究,得到以下正确的等量关系式:,,,,(理解应用)请你利用以上信息求下列各式的值:(1);(2)(拓展应用)(3)为了求出海岛上的山峰的高度,在处和处树立标杆和,标杆的高都是3丈,两处相隔1000步(1步等于6尺),并且和在同一平面内,在标杆的顶端处测得山峰顶端的仰角75°,在标杆的顶端处测得山峰顶端的仰角30°,山峰的高度即的长是多少步?(结果保留整数)(参考数据:)25.(10分)已知菱形的两条对角线长度之和为40厘米,面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数关系式,并写出自变量x的取值范围.(2)当x取何值时,菱形的面积最大,最大面积是多少?26.(10分)如图,有一个斜坡,坡顶离地面的高度为20米,坡面的坡度为,求坡面的长度.
参考答案一、选择题(每小题3分,共30分)1、C【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【题目详解】解:这组数据的平均数、方差和标准差都与被涂污数字有关,而这组数据的中位数为46,与被涂污数字无关.故选:C.【题目点拨】本题考查了方差:它也描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.掌握以上知识是解题的关键.2、C【题目详解】∵AB是⊙O的切线,∴AB⊥OA,即∠OBA=90°.∵∠BAO=40°,∴∠BOA=50°.∵OB=OC,∴∠OCB=.故选C.3、B【分析】根据相似三角形的判定方法进行判断,要注意相似三角形的对应边和对应角.【题目详解】解:如图,在中,∠B的夹边为AB和BC,在中,∠B的夹边为AB和BD,∴若要,则,即故选B.【题目点拨】此题主要考查的是相似三角形的判定,正确地判断出相似三角形的对应边和对应角是解答此题的关键.4、A【解题分析】试题分析:根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14考点:二次函数的性质5、C【分析】利用直线y=2与yx1﹣2x的交点个数可判断x1﹣2x=2实数根的个数.【题目详解】由图象可得直线y=2与yx1﹣2x有三个交点,所以x1﹣2x=2实数根的个数为1.故选C.【题目点拨】本题考查了函数图像的交点问题:把要求方程根的问题转化为函数图像的交点问题是解题关键.6、B【解题分析】试题解析:由题意得,解得:.故选B.7、D【解题分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【题目详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为BC•AD==,S扇形BAC==,∴莱洛三角形的面积S=3×﹣2×=2π﹣2,故选D.【题目点拨】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.8、D【分析】分AB、CD在圆心的同侧和异侧两种情况求得AB与CD的距离.构造直角三角形利用勾股定理求出即可.【题目详解】当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥CD,垂足为F,交AB于点E,连接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF-OE=1cm;当弦AB和CD在圆心异侧时,如图②,过点O作OE⊥AB于点E,反向延长OE交AD于点F,连接OA,OC,∵AB∥CD,∴OF⊥CD,∵AB=8cm,CD=6cm,∴AE=4cm,CF=3cm,∵OA=OC=5cm,∴EO=3cm,OF=4cm,∴EF=OF+OE=7cm.故选D.【题目点拨】本题考查了垂径定理、勾股定理;熟练掌握垂径定理和勾股定理,根据题意画出图形是解题的关键,要注意有两种情况.9、B【分析】先判断△DEF∽△BAF,根据相似三角形的面积比等于相似比的平方计算即可.【题目详解】解:∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∴△DEF∽△BAF,∴.又∵DE:EC=2:1,∴,∴.故选B.【题目点拨】本题考查平行四边形的性质、相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.10、C【分析】作OE⊥AC交⊙O于F,交AC于E,连接CO,根据折叠的性质得到OE=OF,根据直角三角形的性质求出∠CAB,再得到∠COB,再分别求出S△ACO与S扇形BCO即可求解..【题目详解】作OE⊥AC交⊙O于F,交AC于E,由折叠的性质可知,EF=OE=OF,∴OE=OA,在Rt△AOE中,OE=OA,∴∠CAB=30°,连接CO,故∠BOC=60°∵∴r=2,OE=1,AC=2AE=2×=2∴线段、和弧所围成的曲边三角形的面积为S△ACO+S扇形BCO===≈3.8故选C.【题目点拨】本题考查的是翻折变换的性质、圆周角定理,扇形的面积求解,解题的关键是熟知折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.二、填空题(每小题3分,共24分)11、【分析】根据特殊角的三角函数值直接书写即可.【题目详解】故答案为:.【题目点拨】本题考查了特殊角的三角函数值,牢固记忆是解题的关键.12、k<【分析】根据当△>0时,方程有两个不相等的两个实数根可得△=4﹣12k>0,再解即可.【题目详解】解:由题意得:△=4﹣12k>0,解得:k<.故答案为:k<.【题目点拨】本题考查的是根的判别式,即一元二次方程ax2+bx+c=0(a≠0)中,当△>0时,方程有两个不相等的两个实数根.13、直角【分析】先根据非负数的性质及特殊角的三角函数值求得∠A和∠B,即可作出判断.【题目详解】∵,∴,,∴,,∵,,∴∠A=30°,∠B=60°,
∴,
∴△ABC是直角三角形.
故答案为:直角.【题目点拨】本题考查了特殊角的三角函数值,非负数的性质及三角形的内角和定理,根据非负数的性质及特殊角的三角函数值求出∠A、∠B的度数,是解题的关键.14、>【分析】根据统计图,分别求出该超市10月份的水果类销售额与11月份的水果类销售额,比较大小即可.【题目详解】∵10月份的水果类销售额为(万元),11月份的水果类销售额为(万元),∴10月份的水果类销售额>11月份的水果类销售额.故答案是:>【题目点拨】本题主要考查从统计图种提取信息,通过观察统计图,得到有用的信息,是解题的关键.15、(﹣,﹣3)【分析】根据y=a(x﹣h)2+k的顶点是(h,k),可得答案.【题目详解】解:y=﹣(x+)2﹣3的顶点坐标是(﹣,﹣3),故答案为:(﹣,﹣3).【题目点拨】本题考查了抛物线顶点坐标的问题,掌握抛物线顶点式解析式是解题的关键.16、m>1【分析】根据反比例函数,如果当x>0时,y随自变量x的增大而增大,可以得到1-m<0,从而可以解答本题.【题目详解】解:∵反比例函数,当x>0时,y随x的增大而增大,∴1-m<0,
解得,m>1,
故答案为:m>1.【题目点拨】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.17、【分析】根据折叠的性质得到BE=AB,根据矩形的性质得到AB=CD,△BOE∽△DOC,再根据相似三角形的性质即可求解.【题目详解】解:由折叠的性质得到BE=AB,∵四边形ABCD是矩形,∴AB=CD,△BOE∽△DOC,∴△BOE与△DOC的相似比是,∴点O到边AB的距离与点O到边CD的距离的比值是.故答案为:.【题目点拨】本题考查了翻折变换(折叠问题)、矩形的性质、相似三角形的判定与性质等知识,综合性强,还考查了操作、推理、探究等能力,是一道好题.18、【分析】利用黑色区域的面积除以游戏板的面积即可.【题目详解】解:黑色区域的面积=3×3﹣×3×1﹣×2×2﹣×3×1=4,∴击中黑色区域的概率==.故答案是:.【题目点拨】本题考查了几何概率:求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.三、解答题(共66分)19、(1)t,;(2)详见解析;(3)当t为0.1秒或4.1时,四边形EGFH为矩形【分析】(1)先利用勾股定理求出AC的长度,再根据路程=速度×时间即可求出AE的长度,而当0≤t≤2.1时,;当2.1<t≤1时,即可求解;(2)先通过SAS证明△AFG≌△CEH,由此可得到GF=HE,,从而有,最后利用一组对边平行且相等即可证明;(3)利用矩形的性质可知FG=EF,求出GH,用含t的代数式表示出EF,建立方程求解即可.【题目详解】(1)当0≤t≤2.1时,当2.1<t≤1时,∴故答案为:t,(2)证明:∵四边形ABCD是矩形,∴AB=CD,AB∥CD,AD∥BC,∠B=90°,∴AC===1,∠GAF=∠HCE,∵G、H分别是AB、DC的中点,∴AG=BG,CH=DH,∴AG=CH,∵AE=CF,∴AF=CE,在△AFG与△CEH中,,∴,∴GF=HE,∴四边形EGFH是平行四边形.(3)解:如图所示,连接GH,由(1)可知四边形EGFH是平行四边形∵点G、H分别是矩形ABCD的边AB、DC的中点,∴GH=BC=4,∴当EF=GH=4时,四边形EGFH是矩形,分两种情况:①当0≤t≤2.1时,AE=CF=t,EF=1﹣2t=4,解得:t=0.1②当2.1<t≤1时,,AE=CF=t,EF=2t-1=4,解得:t=4.1即:当t为0.1秒或4.1时,四边形EGFH为矩形【题目点拨】本题主要考查平行四边形的判定及矩形的性质,掌握平行四边形的判定方法及矩形的性质是解题的关键.20、无触礁的危险,理由见解析【分析】作高AD,由题意可得∠ACD=60°,∠ABC=30°,进而得出∠ABC=∠BAC=30°,于是AC=BC=20海里,在Rt△ADC中,利用直角三角形的边角关系,求出AD与15海里比较即可.【题目详解】解:过点A作ADBC,垂足为D∵∠ABC=∠ACD=∴∠BAC==∠ABC∴BC=AC=20∴=AD=20=10所以货船在航行途中无触礁的危险.【题目点拨】本题考查了解直角三角形的应用,解一般三角形的问题一般可以转化为解直角三角形的问题,正确作出高线是解题的关键.21、(1)b=2,c=3;(2)(0,3),(1,4)(3)见解析;(4)-12<y≤4【解题分析】(1)将点(2,3),(3,0)的坐标直接代入y=-x2+bx+c即可;(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;(3)根据二次函数的定点、对称轴及所过的点画出图象即可;(4)直接由图象可得出y的取值范围.【题目详解】(1)解:把点(2,3),(3,0)的坐标直接代入y=-x2+bx+c得,解得,故答案为:b=2,c=3;(2)解:令x=0,c=3,二次函数图像与y轴的交点坐标为则(0,3),二次函数解析式为y=y=-x2+2x+3=-(x-1)²+4,则顶点坐标为(1,4).(3)解:如图所示…(4)解:根据图像,当-3<x<2时,y的取值范围是:-12<y≤4.【题目点拨】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.22、(1)-32;(2)a=1.【解题分析】分析:(1)原式利用题中的新定义化简,计算即可得到结果;(2)已知等式利用题中的新定义化简,即可求出a的值.详解:(1)(-2)☆3=-2×32+2×(-2)×3+(-2)=-32;(2)==8a+8=8,解得:a=1.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.23、(2)y=﹣x2+3x+2;(2)存在.P(﹣,).(3)【分析】(2)将A,B,C三点代入y=ax2+bx+2求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【题目详解】解:如图:(2)∵抛物线y=ax2+bx+2(a≠0)与x轴,y轴分别交于点A(﹣2,0),B(2,0),点C三点.∴解得∴抛物线的解析式为y=﹣x2+3x+2.(2)存在.理由如下:y=﹣x2+3x+2=﹣(x﹣)2+.∵点D(3,m)在第一象限的抛物线上,∴m=2,∴D(3,2),∵C(0,2)∵OC=OB,∴∠OBC=∠OCB=25°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=25°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为yBP=kx+b(k≠0),把G(0,2),B(2,0)代入,得k=﹣,b=2,∴BP解析式为yBP=﹣x+2.yBP=﹣x+2,y=﹣x2+3x+2当y=yBP时,﹣x+2=﹣x2+3x+2,解得x2=﹣,x2=2(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华师大版初中科学1.2 水的三态变化(30课件)
- 20XX年1月华懋达集团年会庆典概念方案
- 2024年烟台货运资格证模拟考试题
- 算法设计与分析 课件 5.9-动态规划应用-最优二叉搜索树
- 2024年宣城客运资格证考试答题
- 2024年贵州客运从业资格证的考试题目是什么题
- 吉首大学《结构试验》2021-2022学年第一学期期末试卷
- 吉首大学《当代中国电影》2021-2022学年期末试卷
- 《机床夹具设计》试题4
- 吉林艺术学院《音乐文论写作Ⅱ》2021-2022学年第一学期期末试卷
- 中图版七年级下册信息技术 2.1规划影片任务 教学设计
- 2024中科院心理咨询师考试复习题库(官方版)-上单选题汇
- 小学未成年人思想道德建设工作实施方案
- 化工公司安全知识竞赛题库(共1000题)
- GB/T 44421-2024矫形器配置服务规范
- 福建省福州市(2024年-2025年小学二年级语文)统编版期中考试试卷(含答案)
- 2024-2024部编版九年级语文上册期末考试测试卷(附答案)
- 争做“四有好老师”-当好“四个引路人”
- 2024-2025学年八年级生物上册第一学期 期末综合模拟测试卷( 人教版)
- 2024-2030年中国生物炭行业市场发展趋势与前景展望战略分析报告
- 中国融通地产社招笔试
评论
0/150
提交评论