2024届湖南省岳阳市平江县数学九上期末达标检测模拟试题含解析_第1页
2024届湖南省岳阳市平江县数学九上期末达标检测模拟试题含解析_第2页
2024届湖南省岳阳市平江县数学九上期末达标检测模拟试题含解析_第3页
2024届湖南省岳阳市平江县数学九上期末达标检测模拟试题含解析_第4页
2024届湖南省岳阳市平江县数学九上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省岳阳市平江县数学九上期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若2y-7x=0,则x∶y等于()A.2∶7 B.4∶7 C.7∶2 D.7∶42.从﹣1,0,1,2,3这五个数中,任意选一个数记为m,能使关于x的不等式组有解,并且使一元二次方程(m﹣1)x2+2mx+m+2=0有实数根的数m的个数为()A.1个 B.2个 C.3个 D.4个3.小思去延庆世界园艺博览会游览,如果从永宁瞻胜、万芳华台、丝路花雨、九州花境四个景点中随机选择一个进行参观,那么他选择的景点恰为丝路花雨的概率为()A. B. C. D.4.如图,⊙O的半径为5,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为()A. B. C. D.5.如图,在半径为的中,弦与交于点,,,则的长是()A. B. C. D.6.公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()A. B. C. D.7.下列汽车标志中,是中心对称图形的有()个.A.1 B.2 C.3 D.48.口袋中有2个红球和1个黑球,每次摸到后放回,两次都摸到红球的概率为()A. B. C. D.9.在平面直角坐标系中,把点绕原点顺时针旋转,所得到的对应点的坐标为()A. B. C. D.10.如图,二次函数y=ax2+bx+c的图象与x轴相交于A、B两点,C(m,﹣3)是图象上的一点,且AC⊥BC,则a的值为()A.2 B. C.3 D.二、填空题(每小题3分,共24分)11.若二次函数y=2(x+1)2+3的图象上有三个不同的点A(x1,4)、B(x1+x2,n)、C(x2,4),则n的值为_____.12.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:直田积八百六十四步,只云阔不及长一十二步.问阔及长各几步?大意是“一个矩形田地的面积等于864平方步,它的宽比长少12步,问长与宽各多少步?”若设矩形田地的宽为x步,则所列方程为__________.13.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点,点在上,,与交于点,连接,若,,则_____.14.用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是_____cm.15.如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为_______;16.如图,ΔABC内接于⊙O,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,P是BC边上一点,连结AD、DC、AP.已知AB=4,CP=1,Q是线段AP上一动点,连结BQ并延长交四边形ABCD的一边于点R,且满足AP=BR,则17.如图,正方形内接于,正方形的边长为,若在这个圆面上随意抛一粒豆子,则豆子落在正方形内的概率是_____________.18.如图,菱形的顶点在轴正半轴上,顶点的坐标为,以原点为位似中心、在点的异侧将菱形缩小,使得到的菱形与原菱形的相似比为,则点的对应点的坐标为________.三、解答题(共66分)19.(10分)解方程:x2﹣4x﹣5=1.20.(6分)夏季多雨,在山坡处出现了滑坡,为了测量山体滑坡的坡面的长度,探测队在距离坡底点米处的点用热气球进行数据监测,当热气球垂直上升到点时观察滑坡的终端点时,俯角为,当热气球继续垂直上升90米到达点时,探测到滑坡的始端点,俯角为,若滑坡的山体坡角,求山体滑坡的坡面的长度.(参考数据:,结果精确到0.1米)21.(6分)某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.22.(8分)已知如图所示,点到、、三点的距离均等于(为常数),到点的距离等于的所有点组成图形.射线与射线关于对称,过点C作于.(1)依题意补全图形(保留作图痕迹);(2)判断直线与图形的公共点个数并加以证明.23.(8分)如图,在边长为的正方形中,点是射线上一动点(点不与点重合),连接,点是线段上一点,且,连接.求证:;求证:;直接写出的最小值.24.(8分)如图,在10×10的网格中,有一格点△ABC(说明:顶点都在网格线交点处的三角形叫做格点三角形).(1)将△ABC先向右平移5个单位,再向上平移2个单位,得到△A'B'C',请直接画出平移后的△A'B'C';(2)将△A'B'C'绕点C'顺时针旋转90°,得到△A''B''C',请直接画出旋转后的△A''B''C';(3)在(2)的旋转过程中,求点A'所经过的路线长(结果保留π).25.(10分)如图,是的直径,直线与相切于点.过点作的垂线,垂足为,线段与相交于点.(1)求证:是的平分线;(2)若,求的长.26.(10分)如图,点A是我市某小学,在位于学校南偏西15°方向距离120米的C点处有一消防车.某一时刻消防车突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即沿路线CF赶往救火.已知消防车的警报声传播半径为110米,问消防车的警报声对学校是否会造成影响?若会造成影响,已知消防车行驶的速度为每小时60千米,则对学校的影响时间为几秒?(≈3.6,结果精确到1秒)

参考答案一、选择题(每小题3分,共30分)1、A【分析】由2y-7x=0可得2y=7x,再根据等式的基本性质求解即可.【题目详解】解:∵2y-7x=0∴2y=7x∴x∶y=2∶7故选A.【题目点拨】比例的性质,根据等式的基本性质2进行计算即可,是基础题,比较简单.2、B【分析】根据一元一次不等式组可求出m的范围,根据判别式即可求出答案.【题目详解】解:∵∴2﹣2m≤x≤2+m,由题意可知:2﹣2m≤2+m,∴m≥0,∵由于一元二次方程(m﹣1)x2+2mx+m+2=0有实数根,∴△=4m2﹣4(m﹣1)(m+2)=8﹣4m≥0,∴m≤2,∵m﹣1≠0,∴m≠1,∴m的取值范围为:0≤m≤2且m≠1,∴m=0或2故选:B.【题目点拨】本题考查不等式组的解法以及一元二次方程,解题的关键是熟练运用根的判别式.3、B【分析】根据概率公式直接解答即可.【题目详解】∵共有四个景点,分别是永宁瞻胜、万芳华台、丝路花雨、九州花境,∴他选择的景点恰为丝路花雨的概率为;故选:B.【题目点拨】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.4、C【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【题目详解】过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=30°,∵⊙O的半径为5,∴BD=OB•cos∠OBC=,∴BC=5,故选C.【题目点拨】本题考查了垂径定理、圆周角定理、解直角三角形等,添加辅助线构造直角三角形进行解题是关键.5、C【分析】过点作于点,于,连接,由垂径定理得出,得出,由勾股定理得出,证出是等腰直角三角形,得出,求出,由直角三角形的性质得出,由勾股定理得出,即可得出答案.【题目详解】解:过点作于点,于,连接,如图所示:则,∴,在中,,∴,∴是等腰直角三角形,∴,,∵,∴,∴,在中,,∴;故选C.【题目点拨】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.6、A【分析】根据正方形的面积公式可得大正方形的边长为,小正方形的边长为5,再根据直角三角形的边角关系列式即可求解.【题目详解】解:∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为,小正方形的边长为5,∴,∴,∴.故选A.【题目点拨】本题考查了解直角三角形、勾股定理的证明和正方形的面积,难度适中,解题的关键是正确得出.7、B【分析】根据中心对称图形的概念逐一进行分析即可得.【题目详解】第一个图形是中心对称图形;第二个图形不是中心对称图形;第三个图形是中心对称图形;第四个图形不是中心对称图形,故选B.【题目点拨】本题考查了中心对称图形,熟知中心对称图形是指一个图形绕某一个点旋转180度后能与自身完全重合的图形是解题的关键.8、D【分析】根据题意画出树形图即可求出两次都摸到红球的概率,进而得出选项.【题目详解】解:设红球为1,黑球为2,画树形图得:由树形图可知:两次都摸到红球的概率为.故选:D.【题目点拨】本题考查用列表法与树状图法求随机事件的概率,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.9、C【分析】根据题意得点P点P′关于原点的对称,然后根据关于原点对称的点的坐标特点即可得解.【题目详解】∵P点坐标为(3,-2),∴P点的原点对称点P′的坐标为(-3,2).故选C.【题目点拨】本题主要考查坐标与图形变化-旋转,解此题的关键在于熟练掌握其知识点.10、D【分析】在直角三角形ABC中,利用勾股定理AD2+DC2+CD2+BD2=AB2,即m2﹣m(x1+x2)+18+x1x2=0;然后根据根与系数的关系即可求得a的值.【题目详解】过点C作CD⊥AB于点D.∵AC⊥BC,∴AD2+DC2+CD2+BD2=AB2,设ax2+bx+c=0的两根分别为x1与x2(x1≤x2),∴A(x1,0),B(x2,0).依题意有(x1﹣m)2+9+(x2﹣m)2+9=(x1﹣x2)2,化简得:m2﹣m(x1+x2)+9+x1x2=0,∴m2m+90,∴am2+bn+c=﹣9a.∵(m,﹣3)是图象上的一点,∴am2+bm+c=﹣3,∴﹣9a=﹣3,∴a.故选:D.【题目点拨】本题是二次函数的综合试题,考查了二次函数的性质和图象,解答本题的关键是注意数形结合思想.二、填空题(每小题3分,共24分)11、1【分析】先根据点A,C的坐标,建立方程求出x1+x2=-2,代入二次函数解析式即可得出结论.【题目详解】∵A(x1,4)、C(x2,4)在二次函数y=2(x+1)2+3的图象上,∴2(x+1)2+3=4,∴2x2+4x+1=0,根据根与系数的关系得,x1+x2=-2,∵B(x1+x2,n)在二次函数y=2(x+1)2+3的图象上,∴n=2(-2+1)2+3=1,故答案为:1.【题目点拨】此题主要考查了二次函数图象上点的特点,根与系数的关系,求出x1+x2=-2是解本题的关键.12、【分析】如果设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积为864,即可得出方程.【题目详解】解:设矩形田地的宽为x步,那么长就应该是(x+12)步,根据面积公式,得:;故答案为:.【题目点拨】本题为面积问题,考查了由实际问题抽象出一元二次方程,掌握好面积公式即可进行正确解答;矩形面积=矩形的长×矩形的宽.13、.【解题分析】过点C作CM⊥DE于点M,过点E作EN⊥AC于点N,先证△BCD∽△ACE,求出AE的长及∠CAE=60°,推出∠DAE=90°,在Rt△DAE中利用勾股定理求出DE的长,进一步求出CD的长,分别在Rt△DCM和Rt△AEN中,求出MC和NE的长,再证△MFC∽△NFE,利用相似三角形对应边的比相等即可求出CF与EF的比值.【题目详解】解:如图,过点作于点,过点作于点,∵,,∴,∵在中,,∴,在与中,∵,∴,∴,∵,∵,∴,∴∽,∴,∴,∴,,∴,在中,,在中,,∴,,在中,,在中,,∵,∴∽,∴,故答案为:.【题目点拨】本题考查了相似三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够通过作适当的辅助线构造相似三角形,求出对应线段的比.14、10【分析】求得圆锥的母线的长利用勾股定理求得圆锥的高即可.【题目详解】设圆锥的母线长为l,则=10π,解得:l=15,∴圆锥的高为:=10,故答案为:10.【题目点拨】考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于圆锥的侧面扇形的弧长,难度不大.15、72°【题目详解】五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为=72°.故答案为72°.16、1或12【题目详解】解:因为ΔABC内接于圆,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,∴AB=BC=CD=AD,∴ABCD是正方形∴AD//BC①点R在线段AD上,

∵AD∥BC,

∴∠ARB=∠PBR,∠RAQ=∠APB,

∵AP=BR,

∴△BAP≌ABR,

∴AR=BP,

在△AQR与△PQB中,∵∠RAQ=∠QPB∵ΔAQR≅ΔPQB∴BQ=QR∴BQ:QR=1:1②点R在线段CD上,此时△ABP≌△BCR,

∴∠BAP=∠CBR.

∵∠CBR+∠ABR=90°,

∴∠BAP+∠ABR=90°,

∴BQ是直角△ABP斜边上的高,∴BQ=∴QR=BR-BQ=5-2.4=2.6,∴BQ:QR=12故答案为:1或1213【题目点拨】本题考查正方形的性质和判定,全等三角形的性质和判定,勾股定理,中心对称的性质.解答本题的关键是熟练掌握判定两个三角形全等的一般方法:SSS、SAS、ASA、AAS、HL,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17、【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.【题目详解】解:因为正方形的边长为2cm,则对角线的长为cm,所以⊙O的半径为cm,直径为2cm,⊙O的面积为2πcm2;正方形的面积为4cm2因为豆子落在圆内每一个地方是均等的,所以P(豆子落在正方形ABCD内)=.故答案为:.【题目点拨】此题主要考查几何概率的意义:一般地,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有

P(A)=.18、【分析】先求得点C的坐标,再根据如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或进行解答.【题目详解】菱形的顶点的坐标为,;过点作,如图,,,在和中,,∴,,,∴点C的坐标为,以原点为位似中心、在点的异侧将菱形缩小,使得到的菱形与原菱形的相似比为,,则点的对应点的坐标为.故答案为:.【题目点拨】本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为,那么位似图形对应点的坐标的比等于或.三、解答题(共66分)19、x=﹣1或x=2.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【题目详解】x2-4x-2=1,移项,得x2-4x=2,两边都加上4,得x2-4x+4=2+4,所以(x-2)2=9,则x-2=3或x-2=-3∴x=﹣1或x=2.【题目点拨】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20、的长为177.2米.【分析】过点作,垂足为,作,垂足为,设,先根据的正切值得出,再根据的正切值得出,进而计算出,最后根据列出方程求解即得.【题目详解】如下图,过点作,垂足为,作,垂足为设∵在中,∴,∵四边形为矩形∴.∵,∴,∵在中,,∴∴∵在中,,∴∵四边形为矩形∴∴∴解得∴.答:的长为177.2米.【题目点拨】本题是解直角三角形题型,考查了特殊角三角函数,解题关键是将文字语言转化为几何语言,并找出等量关系列方程.21、(1);(2).【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【题目详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=,故答案为:;(2)解:列表如下:ABCDA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B)(D,C)(D,D)共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)==.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22、(1)补全图形见解析;(2)直线与图形有一个公共点,证明见解析.【分析】(1)根据题意可知,点O为△ABC的外心,作AC、BC的垂直平分线,交点为O,然后做出圆O,AC为∠OAM的角平分线,过C作于F,即可得到图形;(2)连接OC,由AC平分∠OAM,则,然后证明,由,得到,得到CF是圆O的切线,即可得到结论.【题目详解】解:(1)依题意补全图形,如图,(2)如图,直线与图形有一个公共点证明:连接,∵射线与射线关于对称,∴AC平分∠OAM,∴,∵,∴,∴,∴,∵于∴,∵图形即⊙,为半径,∴与⊙O相切,即与图形有一个公共点.【题目点拨】本题考查了复杂作图——作圆,作垂直平分线,作角平分线,以及圆的切线的判定,解题的关键是准确作出图形,熟练证明直线是圆的切线.23、(1)证明见解析;(2)证明见解析;(3)的最小值为【分析】(1)由得出,进而得出,即可得出;(2)首先由正方形的性质得出,,然后由(1)中结论得出,进而即可判定,进而得出(3)首先由(1)中得出,然后构建圆,找出DE的最小值即可得解.【题目详解】∵四边形是正方形由(1)知,又由(1)中,得若使有最小值,则DE最小,由(2)中,点E在以AB为直径的圆上,如图所示∴DE最小值为DO-OE=∴的最小值为【题目点拨】此题主要考查相似三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论