版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届铜陵市数学九上期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.若将抛物线的函数图象先向右平移1个单位,再向下平移2个单位后,可得到一个新的抛物线的图象,则所得到的新的抛物线的解析式为()A. B.C. D.2.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=75°,则∠OAC的大小是()A.25° B.50° C.65° D.75°3.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变4.将方程x2-6x+3=0左边配成完全平方式,得到的方程是(
)A.(x-3)2=-3
B.(x-3)2=6
C.(x-3)2=3
D.(x-3)2=125.已知:如图,菱形ABCD的周长为20cm,对角线AC=8cm,直线l从点A出发,以1cm/s的速度沿AC向右运动,直到过点C为止在运动过程中,直线l始终垂直于AC,若平移过程中直线l扫过的面积为S(cm2),直线l的运动时间为t(s),则下列最能反映S与t之间函数关系的图象是()A. B.C. D.6.如图,正方形的边长为4,点在的边上,且,与关于所在的直线对称,将按顺时针方向绕点旋转得到,连接,则线段的长为()A.4 B. C.5 D.67.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.① B.② C.③ D.④8.如图示,二次函数的图像与轴交于坐标原点和,若关于的方程(为实数)在的范围内有解,则的取值范围是()A. B. C. D.9.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2) B.(2,2) C.(﹣2,2) D.(﹣2,﹣2)10.下列哪个方程是一元二次方程()A.2x+y=1 B.x2+1=2xy C.x2+=3 D.x2=2x﹣311.如图,为圆的切线,交圆于点,为圆上一点,若,则的度数为().A. B. C. D.12.某旅游景点8月份共接待游客16万人次,10月份共接待游客36万人次,设游客每月的平均增长率为x,则下列方程正确的是()A.16(1+x2)=36 B.16x+16x(x+1)=36C.16(1+x)+16(1+x)2=36 D.16x(x+1)=36二、填空题(每题4分,共24分)13.若函数为关于的二次函数,则的值为__________.14.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,AOB与COD面积分别为8和18,若双曲线y=恰好经过BC的中点E,则k的值为_____.15.若抛物线与轴没有交点,则的取值范围是__________.16.定义:在平面直角坐标系中,我们将函数的图象绕原点逆时针旋转后得到的新曲线称为“逆旋抛物线”.(1)如图①,己知点,在函数的图象上,抛物线的顶点为,若上三点、、是、、旋转后的对应点,连结,、,则__________;(2)如图②,逆旋抛物线与直线相交于点、,则__________.17.用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为_____.18.如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为_____.三、解答题(共78分)19.(8分)如图,▱ABCD中,连接AC,AB⊥AC,tanB=,E、F分别是BC,AD上的点,且CE=AF,连接EF交AC与点G.(1)求证:G为AC中点;(2)若EF⊥BC,延长EF交BA的延长线于H,若FH=4,求AG的长.20.(8分)如图,已知正方形ABCD,点E为AB上的一点,EF⊥AB,交BD于点F.(1)如图1,直按写出的值;(2)将△EBF绕点B顺时针旋转到如图2所示的位置,连接AE、DF,猜想DF与AE的数量关系,并证明你的结论;(3)如图3,当BE=BA时,其他条件不变,△EBF绕点B顺时针旋转,设旋转角为α(0°<α<360°),当α为何值时,EA=ED?在图3或备用图中画出图形,并直接写出此时α=.21.(8分)如图,抛物线l:y=﹣x2+bx+c(b,c为常数),其顶点E在正方形ABCD内或边上,已知点A(1,2),B(1,1),C(2,1).(1)直接写出点D的坐标_____________;(2)若l经过点B,C,求l的解析式;(3)设l与x轴交于点M,N,当l的顶点E与点D重合时,求线段MN的值;当顶点E在正方形ABCD内或边上时,直接写出线段MN的取值范围;(4)若l经过正方形ABCD的两个顶点,直接写出所有符合条件的c的值.22.(10分)在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.①当时,请直接写出“W区域”内的整点个数;②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.23.(10分)如图,在中,是内心,是边上一点,以点为圆心,为半径的经过点.求证:是的切线;已知的半径是.①若是的中点,,则;②若,求的长.24.(10分)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B(﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连结CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B、C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.25.(12分)[问题发现]如图①,在中,点是的中点,点在边上,与相交于点,若,则_____;[拓展提高]如图②,在等边三角形中,点是的中点,点在边上,直线与相交于点,若,求的值.[解决问题]如图③,在中,,点是的中点,点在直线上,直线与直线相交于点,.请直接写出的长.26.如图,平行四边形ABCD,DE交BC于F,交AB的延长线于E,且∠EDB=∠C.(1)求证:△ADE∽△DBE;(2)若DC=7cm,BE=9cm,求DE的长.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.【题目详解】由“左加右减”的原则可知,将抛物线先向右平移1个单位可得到抛物线;由“上加下减”的原则可知,将抛物线先向下平移2个单位可得到抛物线.
故选:C.【题目点拨】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.2、C【分析】根据圆周角定理得出∠AOC=2∠ABC,求出∠AOC=50°,再根据等腰三角形的性质和三角形内角和定理求出即可.【题目详解】解:∵根据圆周角定理得:∠AOC=2∠ABC,∵∠ABC+∠AOC=75°,∴∠AOC=×75°=50°,∵OA=OC,∴∠OAC=∠OCA=(180°﹣∠AOC)=65°,故选C.【题目点拨】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理等知识点,能求出∠AOC是解此题的关键.3、D【解题分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到;设B为(a,),A为(b,),得到OE=-a,EB=,OF=b,AF=,进而得到,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=为定值,即可解决问题.【题目详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴,设点B为(a,),A为(b,),则OE=-a,EB=,OF=b,AF=,可代入比例式求得,即,根据勾股定理可得:OB=,OA=,∴tan∠OAB===∴∠OAB大小是一个定值,因此∠OAB的大小保持不变.故选D【题目点拨】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.4、B【解题分析】试题分析:移项,得x2-1x=-3,等式两边同时加上一次项系数一半的平方(-3)2,得x2-1x+(-3)2=-3+(-3)2,即(x-3)2=1.故选B.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.5、B【分析】先由勾股定理计算出BO,OD,进而求出△AMN的面积.从而就可以得出0≤t≤4时的函数解析式;再得出当4<t≤8时的函数解析式.【题目详解】解:连接BD交AC于点O,令直线l与AD或CD交于点N,与AB或BC交于点M.∵菱形ABCD的周长为20cm,∴AD=5cm.∵AC=8cm,∴AO=OC=4cm,由勾股定理得OD=OB==3cm,分两种情况:(1)当0≤t≤4时,如图1,MN∥BD,△AMN∽△ABD,∴,,∴MN=t,∴S=MN·AE=t·t=t2函数图象是开口向上,对称轴为y轴且位于对称轴右侧的抛物线的一部分;(2)当4<t≤8时,如图2,MN∥BD,∴△CMN∽△CBD,∴,,MN=t+12,∴S=S菱形ABCD-S△CMN==t2+12t-24=(t-8)2+24.函数图象是开口向下,对称轴为直线t=8且位于对称轴左侧的抛物线的一部分.故选B.【题目点拨】本题是动点函数图象题型,当某部分的解析式好写时,可以写出来,结合排除法,答案还是不难得到的.6、C【分析】如图,连接BE,根据轴对称的性质得到AF=AD,∠EAD=∠EAF,根据旋转的性质得到AG=AE,∠GAB=∠EAD.求得∠GAB=∠EAF,根据全等三角形的性质得到FG=BE,根据正方形的性质得到BC=CD=AB=1.根据勾股定理即可得到结论.【题目详解】解:如图,连接BE,∵△AFE与△ADE关于AE所在的直线对称,∴AF=AD,∠EAD=∠EAF,∵△ADE按顺时针方向绕点A旋转90°得到△ABG,∴AG=AE,∠GAB=∠EAD.∴∠GAB=∠EAF,∴∠GAB+∠BAF=∠BAF+∠EAF.∴∠GAF=∠EAB.∴△GAF≌△EAB(SAS).∴FG=BE,∵四边形ABCD是正方形,∴BC=CD=AB=1.∵DE=1,∴CE=2.∴在Rt△BCE中,BE=,∴FG=5,故选:C.【题目点拨】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7、A【分析】根据题意得到原几何体的主视图,结合主视图选择.【题目详解】解:原几何体的主视图是:.视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.故取走的正方体是①.故选A.【题目点拨】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.8、D【分析】首先将代入二次函数,求出,然后利用根的判别式和求根公式即可判定的取值范围.【题目详解】将代入二次函数,得∴∴方程为∴∵∴故答案为D.【题目点拨】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.9、D【分析】根据二次函数的顶点式方程可以直接写出其顶点坐标.【题目详解】∵抛物线为y=(x+2)2﹣2,∴顶点坐标为(﹣2,﹣2).故选D.【题目点拨】本题考查了二次函数的顶点坐标的求法,掌握二次函数的顶点式y=a(x﹣h)2+k是解题的关键.10、D【分析】方程的两边都是整式,只含有一个未知数,并且整理后未知数的最高次数都是2,像这样的方程叫做一元二次方程,根据定义判断即可.【题目详解】A.2x+y=1是二元一次方程,故不正确;B.x2+1=2xy是二元二次方程,故不正确;C.x2+=3是分式方程,故不正确;D.x2=2x-3是一元二次方程,故正确;故选:D11、B【分析】根据切线的性质以及圆周角定理求解即可.【题目详解】连接OA∵为圆的切线∴∵∴∴故答案为:B.【题目点拨】本题考查了圆的角度问题,掌握切线的性质以及圆周角定理是解题的关键.12、A【分析】设游客每月的平均增长率为x,根据该旅游景点8月份及10月份接待游客人次数,即可得出关于x的一元二次方程,此题得解.【题目详解】解:设游客每月的平均增长率为x,依题意,得:16(1+x)2=1.故选:A.【题目点拨】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题(每题4分,共24分)13、2【分析】根据二次函数的定义,列出关于m的方程和不等式,即可求解.【题目详解】∵函数为关于的二次函数,∴且,∴m=2.故答案是:2.【题目点拨】本题主要考查二次函数的定义,列出关于m的方程和不等式,是解题的关键.14、1【分析】由平行线的性质得∠OAB=∠OCD,∠OBA=∠ODC,两个对应角相等证明OAB∽OCD,其性质得,再根据三角形的面积公式,等式的性质求出m=,线段的中点,反比例函数的性质求出k的值为1.【题目详解】解:如图所示:∵AB∥CD,∴∠OAB=∠OCD,∠OBA=∠ODC,∴OAB∽OCD,∴,若=m,由OB=m•OD,OA=m•OC,又∵,,∴=,又∵S△OAB=8,S△OCD=18,∴,解得:m=或m=(舍去),设点A、B的坐标分别为(0,a),(b,0),∵,∴点C的坐标为(0,﹣a),又∵点E是线段BC的中点,∴点E的坐标为(),又∵点E在反比例函数上,∴=﹣=,故答案为:1.【题目点拨】本题综合考查了相似三角形的判定与性质,平行线的性质,线段的中点坐标,反比例函数的性质,三角形的面积公式等知识,重点掌握反比例函数的性质,难点根据三角形的面积求反比例函数系数的值.15、;【分析】利用根的判别式△<0列不等式求解即可.【题目详解】解:∵抛物线与轴没有交点,∴,即,解得:;故答案为:.【题目点拨】本题考查了抛物线与x轴的交点问题,利用根的判别式列出不等式是解题的关键.16、3;【分析】(1)求出点A、B的坐标,再根据割补法求△ABC的面积即可得到;
(2)将旋转后的MN和抛物线旋转到之前的状态,求出直线解析式及交点坐标,利用割补法求面积即可.【题目详解】解:(1)在上,令x=0,解得y=2,所以C(0,2),OC=2,将,代入,解得a=3,b=2,∴,,设,的直线解析式为,则,解得,直线AB解析式为,令x=0,解得,y=4,即OD=4,∴,∴(2)如图,由旋转知,,,∴,,直线,令,得∴∴∴【题目点拨】此题考查了二次函数与几何问题相结合的问题,将三角形的面积转化为解题关键.17、12【解题分析】根据扇形的弧长等于圆锥底面圆的周长列式进行求解即可.【题目详解】设这个圆锥的母线长为,依题意,有:,解得:,故答案为:12.【题目点拨】本题考查了圆锥的运算,正确把握圆锥侧面展开图的扇形的弧长与底面圆的周长间的关系是解题的关键.18、15°【分析】根据圆周角和圆心角的关系解答即可.【题目详解】解:由图可知,∠AOB=75°﹣45°=30°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠1=∠AOB=×30°=15°.故答案为15°【题目点拨】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.三、解答题(共78分)19、(1)见解析;(2)【分析】(1)欲证明FG=EG,只要证明△AFG≌△CEG即可解决问题;
(2)先根据等角的三角函数得tanB==tan∠HAF==,则AF=CE=3,由cos∠C==,可得结论.【题目详解】解:(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FAG=∠ECG,在△AFG和△CEG中,∵,∴△AFG≌△CEG(AAS),∴AG=CG,∴G为AC中点;(2)解:∵EF⊥BC,AD∥BC,∴AF⊥HF,∠HAF=∠B,∴∠AFH=90°,Rt△AFH中,tanB==tan∠HAF==,∴=,∵FH=4,∴AF=CE=3,Rt△CEG中,cos∠C==,∴,∴AG=CG=.【题目点拨】本题考查了平行四边形的性质、全等三角形的判定和性质,三角函数等知识,(1)解题的关键是正确寻找全等三角形解决问题,(2)利用三角函数列等式是解题的关键.20、(1);(2)DF=AE,理由见解析;(3)作图见解析,30°或150°【分析】(1)直接利用等腰直角三角形的性质计算即可得出结论;(2)先判断出,进而得出△ABE∽△DBF,即可得出结论;(3)先判断出点E在AD的中垂线上,再判断出△BCE是等边三角形,求出∠CBE=60°,再分两种情况计算即可得出结论.【题目详解】(1)∵BD是正方形ABCD的对角线,∴∠ABD=45,BD=AB,∵EF⊥AB,∴∠BEF=90,∴∠BFE=∠ABD=45,∴BE=EF,∴BF=BE,∴DF=BD﹣BF=AB﹣BE=(AB﹣BE)=AE,∴,故答案为:;(2)DF=AE,理由:由(1)知,BF=BE,BD=AB,∠BFE=∠ABD=45,∴,由旋转知,∠ABE=∠DBF,∴△ABE∽△DBF,∴,∴DF=AE;(3)如图3,连接DE,CE,∵EA=ED,∴点E在AD的中垂线上,∴AE=DE,BE=CE,∵四边形ABCD是正方形,∴∠BAD=∠ABC=90,AB=BC,∴BE=CE=BC,∴△BCE是等边三角形,∴∠CBE=60,∴∠ABE=∠ABC-∠CBE=90-60=30,即:α=30,如图4,同理,△BCE是等边三角形,∴∠ABE=∠ABC+∠CBE=90+60=150,即:α=150,故答案为:30或150.【题目点拨】本题属于相似形的综合题,主要考查了旋转的性质、正方形的性质、相似三角形的判定和性质以及勾股定理的综合运用,解决问题的关键是利用相似比表示线段之间的关系.21、(1)D点的坐标为(1,1);(1)y=﹣x1+3x﹣1;(3)1≤MN≤;(4)所有符合条件的c的值为﹣1,1,﹣1.【分析】(1)根据正方形的性质,可得D点的坐标;(1)根据待定系数法,可得函数解析式;(3)根据顶点横坐标纵坐标越大,与x轴交点的线段越长,根据顶点横坐标纵坐标越小,与x轴交点的线段越短,可得答案;(4)根据待定系数法,可得c的值,要分类讨论,以防遗漏.【题目详解】解:(1)由正方形ABCD内或边上,已知点A(1,1),B(1,1),C(1,1),得D点的横坐标等于C点的横坐标,即D点的横坐标为1,D点的纵坐标等于A点的纵坐标,即D点的纵坐标为1,D点的坐标为(1,1);(1)把B(1,1)、C(1,1)代入解析式可得:,解得:所以二次函数的解析式为y=﹣x1+3x﹣1;(3)由此时顶点E的坐标为(1,1),得:抛物线解析式为y=﹣(x﹣1)1+1把y=0代入得:﹣(x﹣1)1+1=0解得:x1=1﹣,x1=1+,即N(1+,0),M(1﹣,0),所以MN=1+﹣(1﹣)=1.点E的坐标为B(1,1),得:抛物线解析式为y=﹣(x﹣1)1+1把y=0代入得:﹣(x﹣1)1+1=0解得:x1=0,x1=1,即N(1,0),M(0,0),所以MN=1﹣0=1.点E在线段AD上时,MN最大,点E在线段BC上时,MN最小;当顶点E在正方形ABCD内或边上时,1≤MN≤1;(4)当l经过点B,C时,二次函数的解析式为y=﹣x1+3x﹣1,c=﹣1;当l经过点A、D时,E点不在正方形ABCD内或边上,故排除;当l经过点B、D时,,解得:,即c=﹣1;当l经过点A、C时,,解得,即c=1;综上所述:l经过正方形ABCD的两个顶点,所有符合条件的c的值为﹣1,1,﹣1.【题目点拨】本题考查了二次函数综合题,利用待定系数法求函数解析式;利用正方形的性质求顶点坐标是解题的关键;利用顶点横坐标纵坐标越大,与x轴交点的线段越长得出顶点为D时MN最长,顶点为B时MN最短是解题的关键.22、(1)顶点P的坐标为;(2)①6个;②,.【分析】(1)由抛物线解析式直接可求;
(2)①由已知可知A(0,2),C(2+,-2),画出函数图象,观察图象可得;
②分两种情况求:当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a=,则<a≤1;当a<0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1≤a<-.【题目详解】解:(1)∵y=ax2-4ax+2a=a(x-2)2-2a,
∴顶点为(2,-2a);
(2)如图,①∵a=2,
∴y=2x2-8x+2,y=-2,
∴A(0,2),C(2+,-2),
∴有6个整数点;②当a>0时,抛物线定点经过(2,-2)时,a=1,
抛物线定点经过(2,-1)时,,;∴.当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,;∴.∴综上所述:,.【题目点拨】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键.23、(1)详见解析;(2)①;②【分析】(1)延长交于,连接.得出,再利用角之间的关系可得出,即,结论即可得证.(2)①利用勾股定理即可求解②由知,,根据对应线段成比例,可得出AB,AD的值,从而可求出AI的长.【题目详解】解:(1)证明:延长交于,连接.是的内心,平分平分...又,....为的切线.①∵∴.②解:由知,..∴.【题目点拨】本题考查的知识点有圆的切线的判定定理,相似三角形的判定与性质,综合性较强,利用数形结合的方法可以更好的理解题目,有助于找出解题的方向.24、(1)y=x2+6x+5;(2)①S△PBC的最大值为;②存在,点P的坐标为P(﹣,﹣)或(0,5).【解题分析】(1)将点A、B坐标代入二次函数表达式,即可求出二次函数解析式;(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1,设点G(t,t+1),则点P(t,t2+6t+5),利用三角形面积公式求出最大值即可;②设直线BP与CD交于点H,当点P在直线BC下方时,求出线段BC的中点坐标为(﹣,﹣),过该点与BC垂直的直线的k值为﹣1,求出直线BC中垂线的表达式为:y=﹣x﹣4…③,同理直线CD的表达式为:y=2x+2…④,、联立③④并解得:x=﹣2,即点H(﹣2,﹣2),同理可得直线BH的表达式为:y=x﹣1…⑤,联立⑤和y=x2+6x+5并解得:x=﹣,即可求出P点;当点P(P′)在直线BC上方时,根据∠PBC=∠BCD求出BP′∥CD,求出直线BP′的表达式为:y=2x+5,联立y=x2+6x+5和y=2x+5,求出x,即可求出P.【题目详解】解:(1)将点A、B坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2+6x+5…①,令y=0,则x=﹣1或﹣5,即点C(﹣1,0);(2)①如图1,过点P作y轴的平行线交BC于点G,将点B、C的坐标代入一次函数表达式并解得:直线BC的表达式为:y=x+1…②,设点G(t,t+1),则点P(t,t2+6t+5),S△PBC=PG(xC﹣xB)=(t+1﹣t2﹣6t﹣5)=﹣t2﹣t﹣6,∵-<0,∴S△PBC有最大值,当t=﹣时,其最大值为;②设直线BP与CD交于点H,当点P在直线BC下方时,∵∠PBC=∠BCD,∴点H在BC的中垂线上,线段BC的中点坐标为(﹣,﹣),过该点与B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智慧农业项目承包合同10篇
- 2025年度海参养殖基地环境保护与生态补偿合同3篇
- 2025年度昌平区校园食堂承包项目竞争性磋商合同3篇
- 2025年度新能源汽车充电车位分期付款租赁合同4篇
- 2025年度现代化猪栏设施租赁合同3篇
- 2025年度商业物业承包经营合同范本4篇
- 2025年度新能源汽车融资租赁合同范本3篇
- 2025年度宠物店宠物购买合同附宠物用品租赁服务合同3篇
- 2025年度海绵城市建设项目特许经营合同3篇
- 2025年度商业步行街摊位租赁及商业管理合同4篇
- pcs-985ts-x说明书国内中文版
- GB 11887-2012首饰贵金属纯度的规定及命名方法
- 小品《天宫贺岁》台词剧本手稿
- 医院患者伤口换药操作课件
- 欠薪强制执行申请书
- 体检报告单入职体检模板
- 矿山年中期开采重点规划
- 资源库建设项目技术规范汇编0716印刷版
- GC2级压力管道安装质量保证体系文件编写提纲
- 预应力混凝土简支小箱梁大作业计算书
- 燃烧机论文定型机加热论文:天然气直燃热风技术在定型机中的应用
评论
0/150
提交评论