




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省宁波市惠贞书院九年级数学第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,正方形,,,,,按如图所示的方式放置,其中点在轴上,点,,,,,,…在轴上,已知正方形的边长为1,,,…,则正方形的边长是()A. B. C. D.2.若式子有意义,则x的取值范围为()A.x≥2 B.x≠3C.x≥2或x≠3 D.x≥2且x≠33.已知反比例函数,下列结论中不正确的是()A.图象必经过点 B.随的增大而增大C.图象在第二,四象限内 D.若,则4.在Rt△ABC中,∠C=90°,tanA=,则sinA的值为()A. B. C. D.5.如图,⊙O是直角△ABC的内切圆,点D,E,F为切点,点P是上任意一点(不与点E,D重合),则∠EPD=()A.30° B.45° C.60° D.75°6.关于二次函数y=x2+4x﹣5,下列说法正确的是()A.图象与y轴的交点坐标为(0,5) B.图象的对称轴在y轴的右侧C.当x<﹣2时,y的值随x值的增大而减小 D.图象与x轴的两个交点之间的距离为57.方程x2=4的解是()A.x=2B.x=﹣2C.x1=1,x2=4D.x1=2,x2=﹣28.已知二次函数y=mx2+x+m(m-2)的图像经过原点,则m的值为()A.0或2 B.0 C.2 D.无法确定9.对于二次函数的图象,下列说法正确的是()A.开口向下 B.对称轴 C.顶点坐标是 D.与轴有两个交点10.如图,以原点O为圆心的圆交x轴于点A、B两点,交y轴的正半轴于点C,D为第一象限内上的一点,若,则的度数是A.B.C.D.二、填空题(每小题3分,共24分)11.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是__________米.12.如图,,,若,则_________.13.如图,在Rt△ABC中,∠C=90°,AC=6,AD∥BC,DE与AB交于点F,已知AD=4,DF=2EF,sin∠DAB=,则线段DE=_____.14.已知:中,点是边的中点,点在边上,,,若以,,为顶点的三角形与相似,的长是____.15.已知是方程的一个根,则代数式的值为__________.16.已知如图,是的中位线,点是的中点,的延长线交于点A,那么=__________.17.若能分解成两个一次因式的积,则整数k=_________.18.二次函数y=4(x﹣3)2+7的图象的顶点坐标是_____.三、解答题(共66分)19.(10分)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)如果果园既要让橙子的总产量达到60375个,又要确保每一棵橙子树接受到的阳光照射尽量少受影响,那么应该多种多少棵橙子树?(2)增种多少棵橙子树,可以使果园橙子的总产量最多?最多为多少?20.(6分)(1)用公式法解方程:x2﹣2x﹣1=0(2)用因式分解法解方程:(x﹣1)(x+3)=1221.(6分)如图,抛物线与轴相交于两点(点在点的左侧),与轴相交于点.抛物线上有一点,且.(1)求抛物线的解析式和顶点坐标.(2)当点位于轴下方时,求面积的最大值.(3)①设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.求关于的函数解析式,并写出自变量的取值范围;②当时,点的坐标是___________.22.(8分)如图1,AB为⊙O的直径,点C为⊙O上一点,CD平分∠ACB交⊙O于点D,交AB于点E.(1)求证:△ABD为等腰直角三角形;(2)如图2,ED绕点D顺时针旋转90°,得到DE′,连接BE′,证明:BE′为⊙O的切线;(3)如图3,点F为弧BD的中点,连接AF,交BD于点G,若DF=1,求AG的长.23.(8分)已知:二次函数,求证:无论为任何实数,该二次函数的图象与轴都在两个交点;24.(8分)如图,在正方形中,,点在正方形边上沿运动(含端点),连接,以为边,在线段右侧作正方形,连接、.小颖根据学习函数的经验,在点运动过程中,对线段、、的长度之间的关系进行了探究.下面是小颖的探究过程,请补充完整:(1)对于点在、边上的不同位置,画图、测量,得到了线段、、的长度的几组值,如下表:位置位置位置位置位置位置位置在、和的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数.(2)在同一平面直角坐标系中,画出(1)中所确定的函数的图象:(3)结合函数图像,解决问题:当为等腰三角形时,的长约为25.(10分)某班为推荐选手参加学校举办的“祖国在我心中”演讲比赛活动,先在班级中进行预赛,班主任根据学生的成绩从高到低划分为A,B,C,D四个等级,并绘制了不完整的两种统计图表.请根据图中提供的信息,回答下列问题:(1)a的值为;(2)求C等级对应扇形的圆心角的度数;(3)获得A等级的4名学生中恰好有1男3女,该班将从中随机选取2人,参加学校举办的演讲比赛,请利用列表法或画树状图法,求恰好选中一男一女参加比赛的概率.26.(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且利润率不得高于50%.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:售价x(元/千克)455055销售量y(千克)11010090(1)求y与x之间的函数表达式,并写出自变量的范围;(2)设每天销售该商品的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本),并求出售价为多少元时每天销售该商品所获得最大利润,最大利润是多少?
参考答案一、选择题(每小题3分,共30分)1、D【分析】利用正方形的性质结合锐角三角函数关系得出正方形边长,进而即可找到规律得出答案.【题目详解】∵正方形的边长为1,,,…同理可得故正方形的边长为故选:D.【题目点拨】本题主要考查正方形的性质和锐角三角函数,利用正方形的性质和锐角三角函数找出规律是解题的关键.2、D【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件可得关于x的不等式组,解不等式组即可.【题目详解】由题意,要使在实数范围内有意义,必须且x≠3,故选D.3、B【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k,可以判断出A的正误;根据反比例函数的性质:k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大可判断出B、C、D的正误.【题目详解】A、反比例函数,所过的点的横纵坐标之积=−6,此结论正确,故此选项不符合题意;B、反比例函数,在每一象限内y随x的增大而增大,此结论不正确,故此选项符合题意;C、反比例函数,图象在第二、四象限内,此结论正确,故此选项不合题意;D、反比例函数,当x>1时图象在第四象限,y随x的增大而增大,故x>1时,−6<y<0;故选:B.【题目点拨】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.4、B【分析】由题意直接根据三角函数的定义进行分析即可求解.【题目详解】解:∵在Rt△ABC中,∠C=90°,tanA=,∴可以假设BC=k,AC=2k,∴AB=k,∴sinA==.故选:B.【题目点拨】本题考查同角三角函数的计算,解题本题的关键是明确sinA等于对边与斜边的比.5、B【分析】连接OE,OD,由切线的性质易证四边形OECD是矩形,则可得到∠EOD的度数,由圆周角定理进而可求出∠EPD的度数.【题目详解】解:连接OE,OD,∵⊙O是直角△ABC的内切圆,点D,E,F为切点,∴OE⊥BC,OD⊥AC,∴∠C=∠OEC=∠ODC=90°,∴四边形OECD是矩形,∴∠EOD=90°,∴∠EPD=∠EOD=45°,故选:B.【题目点拨】此题主要考查了圆周角定理以及切线的性质等知识,得出∠EOD=90°是解题关键.6、C【分析】通过计算自变量为0的函数值可对A进行判断;利用对称轴方程可对B进行判断;根据二次函数的性质对C进行判断;通过解x2+4x﹣5=0得抛物线与x轴的交点坐标,则可对D进行判断.【题目详解】A、当x=0时,y=x2+4x﹣5=﹣5,所以抛物线与y轴的交点坐标为(0,﹣5),所以A选项错误;B、抛物线的对称轴为直线x=﹣=﹣2,所以抛物线的对称轴在y轴的左侧,所以B选项错误;C、抛物线开口向上,当x<﹣2时,y的值随x值的增大而减小,所以C选项正确;D、当y=0时,x2+4x﹣5=0,解得x1=﹣5,x2=1,抛物线与x轴的交点坐标为(﹣5,0),(1,0),两交点间的距离为1+5=6,所以D选项错误.故选:C.【题目点拨】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.7、D【解题分析】x2=4,x=±2.故选D.点睛:本题利用方程左右两边直接开平方求解.8、C【分析】根据题意将(0,0)代入解析式,得出关于m的方程,解之得出m的值,由二次函数的定义进行分析可得答案.【题目详解】解:∵二次函数y=mx1+x+m(m-1)的图象经过原点,∴将(0,0)代入解析式,得:m(m-1)=0,解得:m=0或m=1,又∵二次函数的二次项系数m≠0,∴m=1.故选:C.【题目点拨】本题考查二次函数图象上点的坐标特征以及二次函数的定义,熟练掌握二次函数图象上的点满足函数解析式及二次函数的定义是解题的关键.9、C【分析】根据抛物线的性质由a=2得到图象开口向上,再根据顶点式得到顶点坐标,再根据对称轴为直线x=1和开口方向和顶点,从而可判断抛物线与x轴的公共点个数.【题目详解】解:二次函数y=2(x-1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.
故选:C.【题目点拨】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,其顶点坐标为(h,k),对称轴为x=h.当a>0时,抛物线开口向上,当a<0时,抛物线开口向下.10、D【分析】根据圆周角定理求出,根据互余求出∠COD的度数,再根据等腰三角形性质即可求出答案.【题目详解】解:连接OD,,,,,.故选D.【题目点拨】本题考查了圆周角定理,等腰三角形性质等知识.熟练应用圆周角定理是解题的关键.二、填空题(每小题3分,共24分)11、54【解题分析】设建筑物的高为x米,根据题意易得△CDG∽△ABG,∴,∵CD=DG=2,∴BG=AB=x,再由△EFH∽△ABH可得,即,∴BH=2x,即BD+DF+FH=2x,亦即x-2+52+4=2x,解得x=54,即建筑物的高是54米.12、1【分析】可得出△OAB∽△OCD,可求出CD的长.【题目详解】解:∵AB∥CD,
∴△OAB∽△OCD,
∴,
∵,若AB=8,
∴CD=1.
故答案为:1.【题目点拨】此题考查相似三角形的判定与性质,解题的关键是熟练掌握基本知识.13、2【分析】作DG⊥BC于G,则DG=AC=6,CG=AD=4,由平行线得出△ADF∽△BEF,得出==2,求出BE=AD=2,由平行线的性质和三角函数定义求出AB=C=10,由勾股定理得出BC=8,求出EG=BC﹣BE﹣CG=2,再由勾股定理即可得出答案.【题目详解】解:作DG⊥BC于G,则DG=AC=6,CG=AD=4,∵AD∥BC,∴△ADF∽△BEF,∴==2,∴BE=AD=2,∵AD∥BC,∴∠ABC=∠DAB,∵∠C=90°,∴sin∠ABC==sin∠DAB=,∴AB=AC=×6=10,∴BC==8,∴EG=BC﹣BE﹣CG=8﹣2﹣4=2,∴DE===2;故答案为:2.【题目点拨】本题考查了相似三角形的判定与性质、平行线的性质以及解直角三角形等知识;证明三角形相似是解题的关键.14、4或【分析】根据相似三角形对应边成比例进行解答.【题目详解】解:分两种情况:
①∵△AEF∽△ABC,
∴AE:AB=AF:AC,即:②∵△AEF∽△ACB,
∴AF:AB=AE:AC,
即:故答案为:4或【题目点拨】本题考查了相似三角形的性质,在解答此类题目时要找出对应的角和边.15、【分析】根据方程的根的定义,得,结合完全平方公式,即可求解.【题目详解】∵是方程的一个根,∴,即:∴=1+1=1.故答案是:1.【题目点拨】本题主要考查方程的根的定义以及完全平方公式,,掌握完全平方公式,是解题的关键.16、1:1【分析】连结AP并延长交BC于点F,则S△CPE=S△AEP,可得S△CPE:S△ADE=1:2,由DE//BC可得△ADE∽△ABC,可得S△ADE:S△ABC=1:4,则S△CPE:S△ABC=1:1.【题目详解】解:连结AP并延长交BC于点F,∵DE△ABC的中位线,∴E是AC的中点,∴S△CPE=S△AEP,∵点P是DE的中点,∴S△AEP=S△ADP,∴S△CPE:S△ADE=1:2,∵DE是△ABC的中位线,∴DE∥BC,DE:BC=1:2,∴△ADE∽△ABC,∴S△ADE:S△ABC=1:4,∴S△CPE:S△ABC=1:1.故答案为1:1.【题目点拨】本题考查三角形的中位线定理,相似三角形的判定和性质,三角形的面积等知识,解题的关键是熟练掌握基本知识.17、【分析】根据题意设多项式可以分解为:(x+ay+c)(2x+by+d),则2c+d=k,根据cd=6,求出所有符合条件的c、d的值,然后再代入ad+bc=0求出a、b的值,与2a+b=1联立求出a、b的值,a、b是整数则符合,否则不符合,最后把符合条件的值代入k进行计算即可.【题目详解】解:设能分解成:(x+ay+c)(2x+by+d),即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,∴cd=6,∵6=1×6=2×3=(-2)×(-3)=(-1)×(-6),∴①c=1,d=6时,ad+bc=6a+b=0,与2a+b=1联立求解得,或c=6,d=1时,ad+bc=a+6b=0,与2a+b=1联立求解得,②c=2,d=3时,ad+bc=3a+2b=0,与2a+b=1联立求解得,或c=3,d=2时,ad+bc=2a+3b=0,与2a+b=1联立求解得,③c=-2,d=-3时,ad+bc=-3a-2b=0,与2a+b=1联立求解得,或c=-3,d=-2,ad+bc=-2a-3b=0,与2a+b=1联立求解得,④c=-1,d=-6时,ad+bc=-6a-b=0,与2a+b=1联立求解得,或c=-6,d=-1时,ad+bc=-a-6b=0,与2a+b=1联立求解得,∴c=2,d=3时,c=-2,d=-3时,符合,∴k=2c+d=2×2+3=1,k=2c+d=2×(-2)+(-3)=-1,∴整数k的值是1,-1.故答案为:.【题目点拨】本题考查因式分解的意义,设成两个多项式的积的形式是解题的关键,要注意6的所有分解结果,还需要用a、b进行验证,注意不要漏解.18、(3,7)【分析】由抛物线解析式可求得答案.【题目详解】∵y=4(x﹣3)2+7,∴顶点坐标为(3,7),故答案为(3,7).三、解答题(共66分)19、(1)应该多种5棵橙子树;(2)增种10棵橙子树,可以使果园橙子的总产量最多.最多为60500个.【分析】(1)根据题意设应该多种x棵橙子树,根据等量关系果园橙子的总产量要达到60375个,列出方程求解即可;(2)根据题意设增种y棵树,就可求出每棵树的产量,然后求出总产量,再配方即可求解.【题目详解】(1)设应该多种x棵橙子树,根据题意得:(100+x)(600-5x)=60375,解得:,(不合题意,舍去)答:应该多种5棵橙子树.(2)设果园橙子的总产量为y个,根据题意得:.答:增种10棵橙子树,可以使果园橙子的总产量最多.最多为60500个.【题目点拨】本题主要考查一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,注意配方法的运用.20、(1)x=;(2)x=﹣5或x=3【分析】(1)根据公式法即可求出答案;(2)根据因式分解法即可求出答案;【题目详解】解:(1)∵a=1,b=﹣2,c=﹣1,∴△=8+4=12,∴x=;(2)∵(x﹣1)(x+3)=12,∴(x+5)(x﹣3)=0,∴x=﹣5或x=3;【题目点拨】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.21、(1),顶点坐标为;(2)8;(3)①;②.【分析】(1)将点C代入表达式即可求出解析式,将表达式转换为顶点式即可写出顶点坐标;(2)根据题目分析可知,当点P位于抛物线顶点时,△ABP面积最大,根据解析式求出A、B坐标,从而得到AB长,再利用三角形面积公式计算面积即可;(3)①分三种情况:0<m≤1、1<m≤2以及m>2时,分别进行计算即可;②将h=9代入①中的表达式分别计算判断即可.【题目详解】解:(1)将点代入,得,解得,∴,∵,∴抛物线的顶点坐标为;(2)令,解得或,∴,,∴,当点与抛物线顶点重合时,△ABP的面积最大,此时;(3)①∵点C(0,-3)关于对称轴x=1对称的点的坐标为(2,-3),P(m,),∴当时,,当时,,当时,,综上所述,;②当h=9时,若,此时方程无解,若,解得m=4或m=-2(不合题意,舍去),∴P(4,5).【题目点拨】本题为二次函数综合题,需熟练掌握二次函数表达式求法及二次函数的性质,对于动点问题正确分析出所存在的所有情况是解题关键.22、(1)见解析;(1)见解析;(3)1.【分析】(1)由AB是⊙O的直径,根据直径所对的圆周角是直角,即可得∠ADB=90°,又由CD平分∠ACB,根据圆周角定理,可得AD=BD,继而可得△ABD是等腰直角三角形;
(1)证明△ADE≌△BDE',可得∠DAE=∠DBE',则∠OBE'=∠ABD+∠DBE'=90°,结论得证;
(3)取AG的中点H,连结DH,则DH=AH=GH,求出DH=DF=1,则答案可求出.【题目详解】(1)∵AB是⊙O的直径,∴∠ADB=∠ACB=90°,∵CD平分∠ACB,∴∠ACD=∠DCB,∴,∴AD=BD,∴△ABD是等腰直角三角形.(1)由旋转的性质得,∠EDE'=90°,DE=DE',∵∠ADB=90°,∴∠ADE=∠BDE',∵AD=BD,∴△ADE≌△BDE'(SAS),∴∠DAE=∠DBE',∵∠EAD=∠DCB=45°,∠ABD=∠DCA=45°,∴∠OBE'=∠ABD+∠DBE'=90°,∴BE′为⊙O的切线;(3)解:∵点F为的中点,∴∠FAD=∠DAB=11.5°,取AG的中点H,连结DH,∵∠ADB=90°,∴DH=AH=GH,∴∠ADH=∠FAD=11.5°,∴∠DHF=∠ADH+∠FAD=45°,∵∠AFD=∠ACD=45°,∴∠DHF=∠AFD,∴DH=DF=1,∴AG=1DH=1.【题目点拨】此题考查了和圆有关的综合性题目,考查了等腰直角三角形的判定与性质、旋转的性质、切线的判定、全等三角形的判定与性质以及直角三角形的性质,熟练掌握切线的判定方法是解题的关键.23、见解析【分析】计算判别式,并且配方得到△=,然后根据判别式的意义得到结论.【题目详解】二次函数∵,,,∴,而,∴,即为任何实数时,方程都有两个不等的实数根,∴二次函数的图象与轴都有两个交点.【题目点拨】本题考查了抛物线与轴的交点:把求二次函数是常数,与轴的交点坐标问题转化为解关于的一元二次方程.24、(1);(2)画图见解析;(3)或或【分析】(1)根据表格的数据,结合自变量与函数的定义,即可得到答案;(2)根据列表、描点、连线,即可得到函数图像;(3)可分为AE=DF,DF=DG,AE=DG,结合图像,即可得到答案.【题目详解】解:(1)根据表格可知,从0开始
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源汽车推广承诺保证合同
- 二零二五年度个人借款给公司合同附利息调整及提前还款条款
- 2025版征收拆迁补偿协议书(含居民安置房入住保障)
- 2025版环保科技项目投资建设合同
- 2025版知识产权保护合同管理与执行细则
- 二零二五版旅游客车租赁与景区导览服务合同
- 2025版开发商与建筑商桥梁隧道工程施工合同范本
- 二零二五年度超声刀美容仪器维修保养与服务合同
- 二零二五年电子商务平台安全监测与预警服务合同
- 2025版高科技企业研发贷款担保合同
- 4.2 诱导公式及恒等变化(精练)(题组版)(解析版)-2026年高考数学一轮复习《一隅三反》系列(新高考新题型)
- 2025年社区工作者备考题库500道及完整答案【历年真题】
- 交投集团薪酬管理办法
- 临床检验 pcr 试题答案2025版
- 融媒体中心媒资管理办法
- 达成书面协议未签订合同
- 2025届辽宁省中考数学试卷有答案
- 2025年中国搬运机器人行业市场调研及未来发展趋势预测报告
- 四川阿坝州遴选公务员考试真题2024
- 消化科常见疾病护理常规
- 设计单位项目负责人培训
评论
0/150
提交评论