版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市丰台区十八中学2024届数学九上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,中,,在同一平面内,将绕点旋转到的位置,使得,则旋转角等于()A. B. C. D.2.己知点都在反比例函数的图象上,则()A. B. C. D.3.计算的结果是()A. B. C. D.4.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,若AC:AB=2:5,则S△ADC:S△BDC是()A.3:19 B. C.3: D.4:215.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE∶EB=4∶1,EF⊥AC于点F,连接FB,则tan∠CFB的值等于()A. B. C. D.56.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论:①OC∥AE;②EC=BC;③∠DAE=∠ABE;④AC⊥OE,其中正确的有()A.1个 B.2个 C.3个 D.4个7.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=﹣x成轴对称8.如图,在△ABC中,∠C=90°,cosA=,AB=10,AC的长是()A.3 B.6 C.9 D.129.在平面直角坐标系中,点E(﹣4,2),点F(﹣1,﹣1),以点O为位似中心,按比例1:2把△EFO缩小,则点E的对应点E的坐标为(
)A.(2,﹣1)或(﹣2,1) B.(8,﹣4)或(﹣8,4) C.(2,﹣1) D.(8,﹣4)10.已知在直角坐标平面内,以点P(﹣2,3)为圆心,2为半径的圆P与x轴的位置关系是()A.相离 B.相切C.相交 D.相离、相切、相交都有可能二、填空题(每小题3分,共24分)11.一次测试,包括甲同学在内的6名同学的平均分为70分,其中甲同学考了45分,则除甲以外的5名同学的平均分为_____分.12.若二次函数的图象与x轴的两个交点和顶点构成等边三角形,则称这样的二次函数的图象为标准抛物线.如图,自左至右的一组二次函数的图象T1,T2,T3……是标准抛物线,且顶点都在直线y=x上,T1与x轴交于点A1(2,0),A2(A2在A1右侧),T2与x轴交于点A2,A3,T3与x轴交于点A3,A4,……,则抛物线Tn的函数表达式为_____.13.如图,的对角线交于点平分交于点,交于点,且,连接.下列结论:①;②;③:④其中正确的结论有__________(填写所有正确结论的序号)14.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长为_____.15.已知二次函数的顶点坐标为,且与轴一个交点的横坐标为,则这个二次函数的表达式为__________.16.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是_____.17.在一个不透明的袋子中只装有n个白球和2个红球,这些球除颜色外其他均相同.如果从袋子中随机摸出一个球,摸到红球的概率是,那么n的值为___.18.当_________时,关于的一元二次方程有两个实数根.三、解答题(共66分)19.(10分)解方程20.(6分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.21.(6分)解方程:x2+11x+9=1.22.(8分)如图,于,以直径作,交于点恰有,连接.(1)如图1,求证:;(2)如图2,连接分别交,于点连接试探究与之间的数量关系,并说明理由;(3)在(2)的基础上,若,求的长.23.(8分)如图,已知抛物线经过,及原点,顶点为.(1)求抛物线的函数解析式;(2)设点在抛物线上,点在抛物线的对称轴上,且以、、,为顶点,为边的四边形是平行四边形,求点的坐标;(3)是抛物线上第一象限内的动点,过点作轴,垂足为.是否存在这样的点,使得以,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.24.(8分)如图,AB是的直径,AC为弦,的平分线交于点D,过点D的切线交AC的延长线于点E.求证:;.25.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣4,1),B(﹣1,2),C(﹣2,4).(1)将△ABC向右平移4个单位后得到△A1B1C1,请画出△A1B1C1,并写出点B1的坐标;(2)△A2B2C2和△A1B1C1关于原点O中心对称,请画出△A2B2C2,并写出点C2的坐标;(3)连接点A和点B2,点B和点A2,得到四边形AB2A2B,试判断四边形AB2A2B的形状(无须说明理由).26.(10分)关于的一元二次方程的两个实数根分别为,.(1)求的取值范围;(2)若,求的值.
参考答案一、选择题(每小题3分,共30分)1、B【分析】由平行线的性质得出,由旋转的性质可知,则有,然后利用三角形内角和定理即可求出旋转角的度数.【题目详解】由旋转的性质可知所以旋转角等于40°故选:B.【题目点拨】本题主要考查平行线的性质,等腰三角形的性质和旋转的性质,掌握旋转角的概念及平行线的性质,等腰三角形的性质和旋转的性质是解题的关键.2、D【解题分析】试题解析:∵点A(1,y1)、B(1,y1)、C(-3,y3)都在反比例函数y=的图象上,∴y1=-;y1=-1;y3=,
∵>->-1,
∴y3>y1>y1.
故选D.3、D【分析】根据同底数幂相乘的运算公式进行计算即可.【题目详解】解:=故选:D.【题目点拨】本题考查同底数幂相乘的运算,熟练掌握运算公式是解题的关键.4、D【分析】根据已知条件易证△ADC∽△ABC,再利用相似三角形的性质解答即可.【题目详解】∵在△ABC中,∠ACB=90°,CD⊥AB于点D,∴∠ADC=∠ACB=90°,∠A=∠A,∴△ADC∽△ABC,∴AC:AB=2:5,是相似比,∴S△ADC:S△ABC=4:25,∴S△ADC:S△BDC=4:(25﹣4)=4:21,故选D.【题目点拨】本题考查了相似三角形的判定和性质,证明△ADC∽△ABC是解决问题的关键.5、C【解题分析】根据题意:在Rt△ABC中,∠C=90°,∠A=30°,∵EF⊥AC,∴EF∥BC,∴=∵AE:EB=4:1,∴=5,∴=,设AB=2x,则BC=x,AC=∴在Rt△CFB中有CF=x,BC=x.则tan∠CFB==故选C.6、C【分析】由C为弧EB中点,利用垂径定理的逆定理得到OC垂直于BE,根据等弧对等弦得到BC=EC,再由AB为直角,利用圆周角定理得到AE垂直于BE,进而得到一对直角相等,利用同位角相等两直线平行得到OC与AE平行,由AD为圆的切线,利用切线的性质得到AB与DA垂直,利用同角的余角相等得到∠DAE=∠ABE,根据E不一定为弧AC中点,可得出AC与OE不一定垂直,即可确定出结论成立的序号.【题目详解】解:∵C为的中点,即,∴OC⊥BE,BC=EC,选项②正确;设AE与CO交于F,∴∠BFO=90°,∵AB为圆O的直径,∴AE⊥BE,即∠BEA=90°,∴∠BFO=∠BEA,∴OC∥AE,选项①正确;∵AD为圆的切线,∴∠DAB=90°,即∠DAE+∠EAB=90°,∵∠EAB+∠ABE=90°,∴∠DAE=∠ABE,选项③正确;点E不一定为中点,故E不一定是中点,选项④错误,则结论成立的是①②③,故选:C.【题目点拨】此题考查了切线的性质,圆周角定理,平行线的判定,以及垂径定理,熟练掌握性质及定理是解本题的关键.7、D【解题分析】分析:根据反比例函数的性质一一判断即可;详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.8、B【分析】根据角的余弦值与三角形边的关系即可求解.【题目详解】解:∵∠C=90°,cosA=,AB=10,∴AC=1.故选:B.【题目点拨】本题主要考查解直角三角形,理解余弦的定义,得到cosA=是解题的关键.9、A【分析】利用位似比为1:2,可求得点E的对应点E′的坐标为(2,-1)或(-2,1),注意分两种情况计算.【题目详解】∵E(-4,2),位似比为1:2,∴点E的对应点E′的坐标为(2,-1)或(-2,1).故选A.【题目点拨】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比.注意位似的两种位置关系.10、A【解题分析】先求出点P到x轴的距离,再根据直线与圆的位置关系得出即可.【题目详解】解:点P(-2,3)到x轴的距离是3,3>2,所以圆P与轴的位置关系是相离,故选A.【题目点拨】本题考查了坐标与图形的性质和直线与圆的位置关系等知识点,能熟记直线与圆的位置关系的内容是解此题的关键.二、填空题(每小题3分,共24分)11、1.【分析】求出6名学生的总分后,再求出除甲同学之外的5人的总分,进而求出平均分即可.【题目详解】(70×6﹣45)÷(6﹣1)=1分,故答案为:1.【题目点拨】此题考查平均数的计算,掌握公式即可正确解答.12、【分析】设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,由△A1B1A2是等边三角形,结合顶点都在直线y=x上,可以求出,A2(4,0),进而得到T1的表达式:,同理,依次类推即可得到结果.【题目详解】解:设抛物线T1,T2,T3…的顶点依次为B1,B2,B3…,连接A1B1,A2B1,A2B2,A3B2,A3B3,A4B3…,过抛物线各顶点作x轴的垂线,如图所示:∵△A1B1A2是等边三角形,∴∠B1A1A2=60°,∵顶点都在直线y=x上,设,∴OC1=m,,∴,∴∠B1OC1=30°,∴∠OB1A1=30°,∴OA1=A1B1=2=A2B1,∴A1C1=A1B1•cos60°=1,,∴OC1=OA1+A1C1=3,∴,A2(4,0),设T1的解析式为:,则,∴,∴T1:,同理,T2的解析式为:,T3的解析式为:,…则Tn的解析式为:,故答案为:.【题目点拨】本题考查了等边三角形的性质,直角三角形中锐角三角函数值的应用,直线表达式的应用,图形规律中类比归纳思想的应用,顶点式设二次函数解析式并求解,掌握二次函数解析式的求解是解题的关键.13、①③④【分析】由四边形ABCD是平行四边形,∠ABC=60°,EC平分∠DCB,得△ECB是等边三角形,结合AB=2BC,得∠ACB=90°,进而得∠CAB=30°,即可判断①;由∠OCF<∠DAO,∠OFC>∠ADO,即可判断②;易证△OEF∽△BCF,得OF=OB,进而得S△AOD=S△BOC=3S△OCF,即可判断③;设OF=a,得DF=4a,BF=2a,即可判断④.【题目详解】∵四边形ABCD是平行四边形,
∴CD∥AB,OD=OB,OA=OC,
∴∠DCB+∠ABC=180°,
∵∠ABC=60°,
∴∠DCB=120°,
∵EC平分∠DCB,
∴∠ECB=∠DCB=60°,
∴∠EBC=∠BCE=∠CEB=60°,
∴△ECB是等边三角形,
∴EB=BC=EC,
∵AB=2BC,
∴EA=EB=EC,
∴∠ACB=90°,∴∠CAB=30°,即:,故①正确;∵AD∥BC,∴∠ADO=∠CBO,∠DAO=∠BCO,∵∠OCF<∠BCO,∠OFC>∠CBO,∴∠OCF<∠DAO,∠OFC>∠ADO,∴错误,故②错误;
∵OA=OC,EA=EB,
∴OE∥BC,
∴△OEF∽△BCF,∴,
∴OF=OB,
∴S△AOD=S△BOC=3S△OCF,故③正确;
设OF=a,∵OF=OB,∴OB=OD=3a,∴DF=4a,BF=2a,
∴BF2=OF•DF,故④正确;
故答案为:①③④.【题目点拨】本题主要考查平行四边形的性质定理,相似三角形的判定和性质,三角函数的定义,以及直角三角形的判定和性质,掌握平行四边形的性质定理,相似三角形的判定和性质,是解题的关键.14、4【解题分析】试题解析:∵可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案为:4cm.15、【分析】已知抛物线的顶点坐标,则可设顶点式,把(3,0)代入求出的值即可.【题目详解】设二次函数的解析式为,∵抛物线与轴一个交点的横坐标为,则这个点的坐标为:(3,0),∴将点(3,0)代入二次函数的解析式得,解得:,∴这个二次函数的解析式为:,故答案为:【题目点拨】本题主要考查了用待定系数法求二次函数解析式,在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.16、1【分析】根据位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方进行解答即可.【题目详解】解:∵△ABC与△A′B′C′是位似图形,位似比是1:2,∴△ABC∽△A′B′C′,相似比是1:2,∴△ABC与△A′B′C′的面积比是1:4,又△ABC的面积是3,∴△A′B′C′的面积是1,故答案为1.【题目点拨】本题考查的是位似变换的概念和性质,掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方是解题的关键.17、1.【分析】根据概率公式得到,然后利用比例性质求出n即可.【题目详解】根据题意得,解得n=1,经检验:n=1是分式方程的解,故答案为:1.【题目点拨】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18、【分析】根据一元二次方程根与系数的关系即可得出答案.【题目详解】∵关于的一元二次方程有两个实数根∴解得:故答案为:【题目点拨】本题考查的是一元二次方程根与系数的关系,当时,有两个实数根;当时,没有实数根.三、解答题(共66分)19、;【分析】(1)根据因式分解法即可求解;(2)根据特殊角的三角函数值即可求解.【题目详解】∴x-2=0或2x-6=0解得;===1.【题目点拨】此题主要考查一元二次方程的求解及特殊角的三角函数值的运算,解题的关键是熟知方程的解法及特殊角的三角函数值.20、(1)答案见解析;(2).【分析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【题目详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P==.21、x1=﹣1,x2=﹣2【分析】利用因式分解法进行解答即可.【题目详解】解:方程分解得:(x+1)(x+2)=1,可得x+1=1或x+2=1,解得:x1=﹣1,x2=﹣2.【题目点拨】本题考查了一元二次方程的因式分解法,正确的因式分解是解答本题的关键.22、(1)证明见解析;(2);理由见解析;(3).【分析】(1)由直径所对圆周角等于90度可得,进而易证,再根据即可证明;(2)由,可得,进而可知,再由同弧所对圆周角相等可得,再分别证明,,从而可得,即可解决问题;(3)设,,由,可得,可得,由,可得,设,,根据,可得,求出即可解决问题.【题目详解】解:(1)证明:是直径,,∵,,,,,又∵,(AAS).(2)结论:.理由如下:由(1)可得:,,,是直径,∴,,,又∵,∴,∴,,,,,.(3)解:设,,,,整理得,或(舍弃),,,又∵由(2)可知,,,∵,∴,∴,设,,,,,【题目点拨】本题综合考查了圆与相似,涉及了圆的性质、切线的性质、全等三角形的判定和性质、相似三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,属于中考压轴题.23、(1);(2)点的坐标为:(1,3);(3)存在.符合条件的点有两个,分别是或(3,15).【分析】(1)由于抛物线经过A(-2,0),B(-3,3)及原点O,待定系数法即可求出抛物线的解析式;
(2)根据平行四边形的性质,对边平行且相等,可以求出点D的坐标;
(3)分两种情况讨论,①△AMP∽△BOC,②PMA∽△BOC,根据相似三角形对应边的比相等可以求出点P的坐标.【题目详解】解:(1)设抛物线的解析式为,将点,,代入,可得:,解得:.故函数解析式为:;(2)当AO为平行四边形的边时,DE∥AO,DE=AO,由A(-2,0)知:DE=AO=2,
由四边形AODE可知D在对称轴直线x=-1右侧,
则D横坐标为1,代入抛物线解析式得D(1,3).
综上可得点D的坐标为:(1,3);(3)存在.理由如下:如图:,,根据勾股定理得:,,,,是直角三角形,,假设存在点,使以,,为顶点的三角形与相似,设,由题意知,,且,①若,则,即,得:,(舍去).当时,,即,②若,则,即:,得:,(舍去),当时,,即.故符合条件的点有两个,分别是或(3,15).【题目点拨】本题考查的是二次函数的综合题,首先用待定系数法求出抛物线的解析式,然后利用平行四边形的性质和相似三角形的性质确定点D和点P的坐标,注意分类讨论思想的运用,难度较大.24、(1)证明见解析;(2)证明见解析.【分析】(1)连接OD,根据等腰三角形的性质结合角平分线的性质可得出∠CAD=∠ODA,利用“内错角相等,两直线平行”可得出AE//OD,结合切线的性质即可证出DE⊥AE;(2)过点D作DM⊥AB于点M,连接CD、DB,根据角平分线的性质可得出DE=DM,结合AD=AD、∠AED=∠AMD=90°即可证出△DAE≌△DAM(SAS),根据全等三角形的性质可得出AE=AM,由∠EAD=∠MAD可得出,进而可得出CD=BD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年医药生物行业投资策略报告:看好创新和出海关注基本面向上细分赛道-国元证券
- 光伏智能跟踪支架建议书可行性研究报告备案
- 中国结肠镜行业市场深度分析及发展前景预测报告
- 项目开发总结报告(合集五)
- 方型太阳能警示桩行业行业发展趋势及投资战略研究分析报告
- 商场项目可行性报告
- 2024河南其他电气机械及器材制造市场前景及投资研究报告
- 2025年秋千项目可行性研究报告
- 2025年半导体封装行业研究报告(附下载)
- 2025办公设备维修合同
- 2024江苏泗阳县交通产业集团招聘第一线操作人员招聘39人易考易错模拟试题(共500题)试卷后附参考答案
- GB 19272-2024室外健身器材的安全通用要求
- 北师大版五年级数学下册第3单元第3课时分数乘法(三)课件
- 2025新外研社版英语七年级下单词默写表
- 2024年演出经纪人资格《思想政治与法律基础》考前必刷必练题库500题(含真题、必会题)
- 麻醉与舒适医疗
- 全国林草行业森林消防员技能竞赛理论知识考试题及答案
- 2024年治安保卫部规章制度(2篇)
- 2024年保密知识测试试题附答案(综合卷)
- 猪粪供应合同范本
- 人教版2024-2025学年六年级数学上册5.4 扇形的面积 同步练习(附答案解析)
评论
0/150
提交评论