




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省宜春实验中学数学九年级第一学期期末监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.已知分式的值为0,则的值是().A. B. C. D.2.在皮影戏的表演中,要使银幕上的投影放大,下列做法中正确的是()A.把投影灯向银幕的相反方向移动 B.把剪影向投影灯方向移动C.把剪影向银幕方向移动 D.把银幕向投影灯方向移动3.如图,在四边形中,,点分别是边上的点,与交于点,,则与的面积之比为()A. B. C.2 D.44.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为()A. B. C. D.5.将抛物线向上平移个单位长度,再向右平移个单位长度,得到的抛物线为()A. B.C. D.6.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数(x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40m/s B.20m/sC.10m/s D.5m/s7.在下列四个汽车标志图案中,是中心对称图形的是()A. B. C. D.8.下列图形中,成中心对称图形的是()A. B. C. D.9.将二次函数化成的形式为()A. B.C. D.10.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135° B.122.5° C.115.5° D.112.5°11.如图方格纸中每个小正方形的边长均为1,点P、A、C都在小正方形的顶点上.某人从点P出发,沿过A、C、P三点的圆走一周,则这个人所走的路程是()A. B. C. D.不确定12.如图,是坐标原点,菱形顶点的坐标为,顶点在轴的负半轴上,反比例函数的图象经过顶点,则的值为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在矩形中,对角线与相交于点,,垂足为点,,且,则的长为_______.14.如果函数是二次函数,那么k的值一定是________.15.若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_____.16.已知中,,,,则的长为__________.17.已知,则的值为___________.18.二次函数的图象经过点(4,﹣3),且当x=3时,有最大值﹣1,则该二次函数解析式为_____.三、解答题(共78分)19.(8分)如图,反比例函数的图象与正比例函数的图象交于点,且点的横坐标为2.(1)求反比例函数的表达;(2)若射线上有点,,过点作与轴垂直,垂足为点,交反比例函数图象于点,连接,,请求出的面积.20.(8分)某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30°,斜坡AE的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米.试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,≈1.732).21.(8分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.22.(10分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,(1)画出关于轴对称的,并写出点的坐标;(2)画出绕原点顺时针方向旋转后得到的,并写出点的坐标;(3)将平移得到,使点的对应点是,点的对应点时,点的对应点是,在坐标系中画出,并写出点,的坐标.23.(10分)如图,点的坐标为,把点绕坐标原点逆时针旋转后得到点.(1)求点经过的弧长;(结果保留)(2)写出点的坐标是________.24.(10分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):或者.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.25.(12分)(1)解方程:(2)计算:26.矩形的长和宽分别是4cm,3cm,如果将长和宽都增加xcm,那么面积增加ycm2(1)求y与x之间的关系式.(2)求当边长增加多少时,面积增加8cm2.
参考答案一、选择题(每题4分,共48分)1、D【分析】分析已知和所求,根据分式值为0的条件为:分子为0而分母不为0,不难得到=0且≠0;根据ab=0,a=0或b=0,即可解出x的值,再根据≠0,即可得到x的取值范围,由此即得答案.【题目详解】∵的值为0∴=0且≠0.解得:x=3.故选:D.【题目点拨】考核知识点:分式值为0.理解分式值为0的条件是关键.2、B【分析】根据中心投影的特点可知:在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长,据此分析判断即可.【题目详解】解:根据中心投影的特点可知,如图,当投影灯接近银幕时,投影会越来越大;相反当投影灯远离银幕时,投影会越来越小,故A错误;当剪影越接近银幕时,投影会越来越小;相反当剪影远离银幕时,投影会越来越大,故B正确,C错误;当银幕接近投影灯时,投影会越来越小;当银幕远离投影灯时,投影会越来越大,故D错误.
故选:B.【题目点拨】此题主要考查了中心投影的特点,熟练掌握中心投影的原理和特点是解题的关键.3、D【分析】由AD∥BC,可得出△AOE∽△FOB,再利用相似三角形的性质即可得出△AOE与△BOF的面积之比.【题目详解】:∵AD∥BC,
∴∠OAE=∠OFB,∠OEA=∠OBF,
∴,∴所以相似比为,∴.故选:D.【题目点拨】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.4、A【分析】画出树状图,共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,即可得出答案.【题目详解】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,∴小李获胜的概率为;故选A.【题目点拨】本题考查了列表法与树状图法以及概率公式;根据题意画出树状图是解题的关键.5、B【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【题目详解】解:将抛物线向上平移个单位长度,再向右平移个单位长度,得到的抛物线为:.故选:B.【题目点拨】本题考查了抛物线的平移,属于基础题型,熟练掌握抛物线的平移规律是解题的关键.6、C【解题分析】当y=5时,则,解之得(负值舍去),故选C7、B【解题分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,符合此定义的只有选项B.故选B.8、B【解题分析】根据中心对称图形的概念求解.【题目详解】A.不是中心对称图形;B.是中心对称图形;C.不是中心对称图形;D.不是中心对称图形.故答案选:B.【题目点拨】本题考查了中心对称图形,解题的关键是寻找对称中心,旋转180°后与原图重合.9、C【分析】利用配方法即可将二次函数转化为顶点式.【题目详解】故选:C.【题目点拨】本题主要考查二次函数的顶点式,掌握配方法是解题的关键.10、D【解题分析】分析:∵OA=OB,∴∠OAB=∠OBC=22.5°.∴∠AOB=180°﹣22.5°﹣22.5°=135°.如图,在⊙O取点D,使点D与点O在AB的同侧.则.∵∠C与∠D是圆内接四边形的对角,∴∠C=180°﹣∠D=112.5°.故选D.11、C【分析】根据题意作△ACP的外接圆,根据网格的特点确定圆心与半径,求出其周长即可求解.【题目详解】如图,△ACP的外接圆是以点O为圆心,OA为半径的圆,∵AC=,AP=,CP=,∴AC2=AP2+CP2∴△ACP是等腰直角三角形∴O点是AC的中点,∴AO=CO=OP=∴这个人所走的路程是故选C.【题目点拨】此题主要考查三角形的外接圆,解题的关键是熟知外接圆的作法与网格的特点.12、C【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【题目详解】∵,
∴,∵四边形OABC是菱形,
∴AO=CB=OC=AB=5,
则点B的横坐标为,
故B的坐标为:,
将点B的坐标代入得,,
解得:.
故选:C.【题目点拨】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.二、填空题(每题4分,共24分)13、【解题分析】设DE=x,则OE=2x,根据矩形的性质可得OC=OD=3x,在直角三角形OEC中:可求得CE=x,即可求得x=,即DE的长为.【题目详解】∵四边形ABCD是矩形∴OC=AC=BD=OD设DE=x,则OE=2x,OC=OD=3x,∵,∴∠OEC=90°在直角三角形OEC中=5∴x=即DE的长为.故答案为:【题目点拨】本题考查的是矩形的性质及勾股定理,掌握矩形的性质并灵活的使用勾股定理是解答的关键.14、-1【解题分析】根据二次函数的定义判定即可.【题目详解】∵函数是二次函数,∴k2-7=2,k-1≠0解得k=-1.故答案为:-1.【题目点拨】此题主要考查了二次函数的定义,正确把握二次函数的定义是解题关键.15、m>1【解题分析】∵反比例函数的图象在其每个象限内,y随x的增大而减小,∴>0,解得:m>1,故答案为m>1.16、5或1【分析】作交BC于D,分两种情况:①D在线段BC上;②D在线段BC的延长线上,根据锐角三角函数值和勾股定理求解即可.【题目详解】作交BC于D①D在线段BC上,如图∵∴∴,在Rt△ACD中,由勾股定理得∴②D在线段BC的延长线上,如图∵∴∴,在Rt△ACD中,由勾股定理得∴故答案为:5或1.【题目点拨】本题考查了解三角形的问题,掌握锐角的三角函数以及勾股定理是解题的关键.17、【分析】设,分别表示出a,b,c,即可求出的值.【题目详解】设∴∴故答案为【题目点拨】本题考查了比例的性质,利用参数分别把a,b,c表示出来是解题的关键.18、y=﹣2(x﹣3)2﹣1【分析】根据题意设出函数的顶点式,代入点(4,﹣3),根据待定系数法即可求得.【题目详解】∵当x=3时,有最大值﹣1,∴设二次函数的解析式为y=a(x﹣3)2﹣1,把点(4,﹣3)代入得:﹣3=a(4﹣3)2﹣1,解得a=﹣2,∴y=﹣2(x﹣3)2﹣1.故答案为:y=﹣2(x﹣3)2﹣1.【题目点拨】本题考查了待定系数法求二次函数的解析式,熟练掌握待定系数法是解题的关键.三、解答题(共78分)19、(1)y=(x>0);(2)△OAB的面积为2.【分析】(1)将A点的横坐标代入正比例函数,可求出A点坐标,再将A点坐标代入反比例函数求出k,即可得解析式;(2)过A点作AN⊥OM,垂足为点N,则AN∥PM,根据平行线分线段成比例得,进而求出M点坐标,将M点的横坐标分别代入反比例函数和正比例函数,求出B、P的坐标,再利用三角形面积公式求出△POM、△BOM的面积,作差得到△BOP的面积,最后根据S△OAB∶S△BAP=OA∶AP=1∶2即可求解.【题目详解】解:(1)A点在正比例函数y=x的图象上,当x=2时,y=3,∴点A的坐标为(2,3)将(2,3)代入反比例函数解析式y=(x>0),得,解得k=1.∴反比例函数的表达式为y=(x>0)(2)如图,过A点作AN⊥OM,垂足为点N,则AN∥PM,∴.∵PA=2OA,∴MN=2ON=4,∴OM=ON+MN=2+4=1∴M点的坐标为(1,0)将x=1代入y=,得y==1,∴点B的坐标为(1,1)将x=1代入y=x,得y==9,∴点P的坐标为(1,9).∴S△POM=×1×9=27,S△BOM=×1×1=3∴S△BOP=27-3=24又∵S△OAB∶S△BAP=OA∶AP=1∶2∴S△OAB=×24=2答:△OAB的面积为2.【题目点拨】本题考查了反比例函数与一次函数的综合问题,以及平行线分线段成比例,熟练掌握待定系数法求函数解析式,利用点的坐标求三角形面积是解题的关键.20、AC=6米;CD=5.2米.【分析】根据题意和正弦的定义求出AB的长,根据余弦的定义求出CD的长.【题目详解】解:由题意得,AB⊥EB,CD⊥AE,∴∠CDA=∠EBA=90°,∵∠E=30°,∴AB=AE=8米,∵BC=2米,∴AC=AB﹣BC=6米,∵∠DCA=90°﹣∠DAC=30°,∴CD=AC×cos∠DCA=6×≈5.2(米).【题目点拨】本题考查了解直角三角形的应用,解决本题的关键是①掌握特殊角的函数值,②能根据题意做构建直角三角形,③熟练掌握直角三角形的边角关系.21、(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【题目详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【题目点拨】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.22、(1)图详见解析,;(2)图详见解析,;(3)图详见解析,【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)让三角形的各顶点都绕点O顺时针旋转90°后得到对应点,顺次连接即可;(3)将平移得到,使点的对应点是,点的对应点是,点的对应点是(4,−1),在坐标系中画出,并写出点,的坐标;【题目详解】解:(1)(2)(3)如图所示:(1)根据图形结合坐标系可得:;(2)根据图形结合坐标系可得:点(3,1);(3)根据图形结合坐标系可得:,;【题目点拨】本题主要考查了作图-旋转变换,作图-轴对称变换,掌握作图-旋转变换,作图-轴对称变换是解题的关键.23、(1);(2)【分析】(1)过点P作x轴的垂线,求出OP的长,由弧长公式可求出弧长;(2)作PA⊥x轴于A,QB⊥x轴于B,由旋转的性质得:∠POQ=90°,OQ=OP,由AAS证明△OBQ≌△PAO,得出OB=PA,QB=OA,由点P的坐标为(1,3),得出OB=PA=3,QB=OA=4,即可得出点Q的坐标.【题目详解】解:(1)过作轴于,∵,∴,∴点经过的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 华飞美食培训
- 电工电子技术 课件 15. 多谐振荡器和计数器的制作
- 清明祭祀防火重点安全教育培训课件
- DB52-T 1867-2025 大数据安全靶场软件系统建设功能要求
- 二年级知识竞答
- 幼儿园秋冬季节预防疾病
- 海南四校2024-2025学年高三下学期3月月考化学试题
- 幼儿园地震减灾安全教育
- 辽宁省抚顺市六校协作体2024届高三上学期期末数学试题 含解析
- 打击传销、反诈骗与安全教育
- 术中获得性压力损伤的预防
- 脑动脉供血不足查房课件
- 2024年 中国人寿保险股份有限公司招聘笔试参考题库含答案解析
- 氟喹诺酮类药物合理使用规范
- 肾错构瘤的护理课件
- 中南地区工程建设标准设计建筑图集 11ZJ411 阳台、外廊栏杆
- 国内整体就业环境分析报告
- 中国近代史人物介绍孙中山
- 肾癌切除术后护理查房课件
- 用户体验测试方案
- 烟气空气全参数
评论
0/150
提交评论