![九年级数学圆的复习课件_第1页](http://file4.renrendoc.com/view/6e55f05dbf2926573a47825adda9f107/6e55f05dbf2926573a47825adda9f1071.gif)
![九年级数学圆的复习课件_第2页](http://file4.renrendoc.com/view/6e55f05dbf2926573a47825adda9f107/6e55f05dbf2926573a47825adda9f1072.gif)
![九年级数学圆的复习课件_第3页](http://file4.renrendoc.com/view/6e55f05dbf2926573a47825adda9f107/6e55f05dbf2926573a47825adda9f1073.gif)
![九年级数学圆的复习课件_第4页](http://file4.renrendoc.com/view/6e55f05dbf2926573a47825adda9f107/6e55f05dbf2926573a47825adda9f1074.gif)
![九年级数学圆的复习课件_第5页](http://file4.renrendoc.com/view/6e55f05dbf2926573a47825adda9f107/6e55f05dbf2926573a47825adda9f1075.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级数学圆的复习课件本章知识结构图圆的基本性质圆圆的对称性弧、弦圆心角之间的关系同弧上的圆周角与圆心角的关系与圆有关的位置关系正多边形和圆有关圆的计算点和圆的位置关系切线直线和圆的位置关系三角形的外接圆三角形内切圆等分圆圆和圆的位置关系弧长扇形的面积圆锥的侧面积和全面积第二页,共54页。9/21/2023经过圆心的弦(如图中的AB)叫做直径.·COAB连接圆上任意两点的线段(如图AC)叫做弦,与圆有关的概念弦第三页,共54页。9/21/2023圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.·COAB弧⌒圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB,读作“圆弧AB”或“弧AB”.第四页,共54页。9/21/2023·COAB劣弧与优弧⌒小于半圆的弧叫做劣弧.大于半圆的弧叫做优弧.⌒(如图中的AC)(用三个字母表示,如图中的ACB)第五页,共54页。9/21/2023想一想判断下列说法的正误:(1)弦是直径;(2)半圆是弧;(3)过圆心的线段是直径;(4)过圆心的直线是直径;(5)半圆是最长的弧;(6)直径是最长的弦;(7)等弧就是拉直以后长度相等的弧
第六页,共54页。9/21/2023弓形:由弦及其所对的弧组成的图形叫弓形。等圆:能够重合的两个圆叫做等圆,易知同圆或等圆的半径相等。同心圆:圆心相同,半径不相等的两个圆叫做同心圆等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。等弧应同时满足两个条件:1)两弧的长度相等,2)两弧的度数相等。1、直径是弦,而弦不一定是直径;2、半圆是弧,而弧不一定是半圆;3、两条等弧的度数相等,长度也相等,反之,度数相等或长度相等的两条弧不一定是等弧。注意:第七页,共54页。9/21/2023二.圆的基本性质1.圆的对称性:(1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.圆有无数条对称轴.(2)圆是中心对称图形,并且绕圆心旋转任何一个角度都能与自身重合,即圆具有旋转不变性..第八页,共54页。9/21/2023一、垂径定理●OABCDM└③AM=BM,重视:模型“垂径定理直角三角形”若①CD是直径②CD⊥AB可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.1.定理
垂直于弦的直径平分弦,并且平分弦所的两条弧.第九页,共54页。9/21/20231、如图,已知⊙O的半径OA长为5,弦AB的长8,OC⊥AB于C,则OC的长为_______.OABC3AC=BC弦心距半径半弦长反思:在⊙O中,若⊙O的半径r、圆心到弦的距离d、弦长a中,任意知道两个量,可根据
定理求出第三个量:第十页,共54页。9/21/20232、垂径定理的逆定理②CD⊥AB,由①CD是直径③AM=BM可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.●OCD●MAB┗平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.第十一页,共54页。9/21/2023垂径定理及推论直径(过圆心的线);(2)垂直弦;(3)平分弦;(4)平分劣弧;(5)平分优弧.知二得三注意:“直径平分弦则垂直弦.”这句话对吗()错●OABCDM└第十二页,共54页。9/21/2023●OABCD1.两条弦在圆心的同侧●OABCD2.两条弦在圆心的两侧例⊙O的半径为10cm,弦AB∥CD,AB=16,CD=12,则AB、CD间的距离是___.2cm或14cm第十三页,共54页。9/21/2023圆心角:我们把顶点在圆心的角叫做圆心角.圆周角:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.·OBA●OBAC二、圆心角、弧、弦、弦心距的关系第十四页,共54页。9/21/2023在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦,④两条弦心距中,有一组量相等,则它们所对应的其余各组量都分别相等.●OAB┓DA′B′D′┏如由条件:②AB=A′B′⌒⌒③AB=A′B′④OD=O′D′可推出①∠AOB=∠A′O′B′二、圆心角、弧、弦、弦心距的关系第十五页,共54页。9/21/2023综上所述,圆周角∠ABC与圆心角∠AOC的大小关系是:同弧所对的圆周角等于它所对的圆心角的一半.●OABC●OABC●OABC即∠ABC=∠AOC.第十六页,共54页。9/21/2023三、圆周角定理及推论
90°的圆周角所对的弦是
.●OABC●OBACDE●OABC定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这弧所对的圆心角的一半.
推论:直径所对的圆周角是
.直角直径判断:(1)相等的圆心角所对的弧相等.(2)相等的圆周角所对的弧相等.(3)等弧所对的圆周角相等.(×)(×)(√)第十七页,共54页。9/21/2023•ABCOD3.6作圆的直径与找90度的圆周角也是圆里常用的辅助线第十八页,共54页。9/21/20232.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC交⊙O与点F.(1)AB与AC的大小有什么关系为什么(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.1.在⊙O中,弦AB所对的圆心角∠AOB=100°,则弦AB所对的圆周角为____________.500或1300第十九页,共54页。9/21/20231、如图1,AB是⊙O的直径,C为圆上一点,弧AC度数为60°,OD⊥BC,D为垂足,且OD=10,则AB=_____,BC=_____;2、已知、是同圆的两段弧,且弧AB等于2倍弧AC,则弦AB与CD之间的关系为();A.AB=2CD B.AB<2CD C.AB>2CD D.不能确定3、如图2,⊙O中弧AB的度数为60°,AC是⊙O的直径,则∠BOC等于();A.150°B.130°C.120°D.60°4、在△ABC中,∠A=70°,若O为△ABC的外心,∠BOC=;若O为△ABC的内心,∠BOC=.图1图2第二十页,共54页。9/21/20231、两个同心圆的直径分别为5cm和3cm,则圆环部分的宽度为_____cm;2、如图1,已知⊙O,AB为直径,AB⊥CD,垂足为E,由图你还能知道哪些正确的结论请把它们一一写出来;3、为改善市区人民生活环境,市建设污水管网工程,某圆柱型水管的直径为100cm,截面如图2,若管内污水的面宽AB=60cm,则污水的最大深度为cm;图1图2第二十一页,共54页。
不在同一直线上的三个点确定一个圆(这个三角形叫做圆的内接三角形,这个圆叫做三角形的外接圆,圆心叫做三角形的外心)
圆内接四边形的性质:(1)对角互补;(2)任意一个外角都等于它的内对角反证法的三个步骤:1、提出假设2、由题设出发,引出矛盾3、由矛盾判定假设不成立,一定结论正确第二十二页,共54页。9/21/2023经过三角形三个顶点可以画一个圆,并且只能画一个.一个三角形的外接圆有几个?一个圆的内接三角形有几个?经过三角形三个顶点的圆叫做三角形的外接圆。三角形的外心就是三角形三条边的垂直平分线的交点,它到三角形三个顶点的距离相等。这个三角形叫做这个圆的内接三角形。三角形外接圆的圆心叫做这个三角形的外心。想一想●OABC
有关概念第二十三页,共54页。9/21/2023分别画一个锐角三角形、直角三角形和钝角三角形,再画出它们的外接圆,观察并叙述各三角形与它的外心的位置关系.做一做锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边中点,钝角三角形的外心位于三角形外.ABC●OABCCAB┐●O●O第二十四页,共54页。9/21/20231、⊙O的半径为R,圆心到点A的距离为d,且R、d分别是方程x2-6x+8=0的两根,则点A与⊙O的位置关系是()A.点A在⊙O内部B.点A在⊙O上C.点A在⊙O外部D.点A不在⊙O上2、M是⊙O内一点,已知过点M的⊙O最长的弦为10cm,最短的弦长为8cm,则OM=_____cm.3、圆内接四边形ABCD中,∠A∶∠B∶∠C∶∠D可以是()A、1∶2∶3∶4B、1∶3∶2∶4C、4∶2∶3∶1D、4∶2∶1∶3第二十五页,共54页。9/21/2023练:有两个同心圆,半径分别为R和r,P是圆环内一点,则OP的取值范围是_____.r<OP<R第二十六页,共54页。9/21/20231、直线和圆相交dr;dr;2、直线和圆相切3、直线和圆相离dr.五.直线与圆的位置关系●O●O相交●O相切相离rrr┐dd┐d┐<=>第二十七页,共54页。9/21/2023切线的判定定理定理
经过半径的外端,并且垂直于这条半径的直线是圆的切线.CD●OA如图∵OA是⊙O的半径,且CD⊥OA,∴CD是⊙O的切线.第二十八页,共54页。9/21/2023判定切线的方法:(1)定义(2)圆心到直线的距离d=圆的半径r(3)切线的判定定理:经过半径的外端,并且垂直于这条半径的直线是圆的切线.第二十九页,共54页。9/21/2023切线的判定定理的两种应用
1、如果已知直线与圆有交点,往往要作出过这一点的半径,再证明直线垂直于这条半径即可;2、如果不明确直线与圆的交点,往往要作出圆心到直线的垂线段,再证明这条垂线段等于半径即可.第三十页,共54页。9/21/2023切线的性质定理圆的切线垂直于过切点的半径.∵CD切⊙O于A,OA是⊙O的半径CD●OA∴CD⊥OA.第三十一页,共54页。9/21/2023切线的性质定理出可理解为如果一条直线满足以下三个性质中的任意两个,则第三个也成立。①经过切点、②垂直于切线、③经过圆心。如①②③①③②②③①任意两个第三十二页,共54页。9/21/20231、两个同心圆的半径分别为3cm和4cm,大圆的弦BC与小圆相切,则BC=_____cm;2、如图2,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,P为切点,设AB=12,则两圆构成圆环面积为_____;3、下列四个命题中正确的是().①与圆有公共点的直线是该圆的切线;②垂直于圆的半径的直线是该圆的切线;③到圆心的距离等于半径的直线是该圆的切线;④过圆直径的端点,垂直于此直径的直线是该圆的切线.A.①② B.②③ C.③④ D.①④第三十三页,共54页。9/21/2023一、判断。1、三角形的外心到三角形各边的距离相等;()2、直角三角形的外心是斜边的中点.()二、填空:1、直角三角形的两条直角边分别是5cm和12cm,则它的外接圆半径
,内切圆半径
;2、等边三角形外接圆半径与内切圆半径之比
.三、选择题:下列命题正确的是()A、三角形外心到三边距离相等B、三角形的内心不一定在三角形的内部C、等边三角形的内心、外心重合D、三角形一定有一个外切圆×√6.5cm2cm2:1C四、一个三角形,它的周长为30cm,它的内切圆半径为2cm,则这个三角形的面积为______.30cm第三十四页,共54页。9/21/2023ABCO七.三角形的外接圆和内切圆:ABCI三角形内切圆的圆心叫三角形的内心。三角形外接圆的圆心叫三角形的外心实质性质三角形的外心三角形的内心三角形三边垂直平分线的交点三角形三内角角平分线的交点到三角形各边的距离相等到三角形各顶点的距离相等第三十五页,共54页。锐角三角形的外心位于三角形内,直角三角形的外心位于直角三角形斜边中点,钝角三角形的外心位于三角形外.ABC●OABCCAB┐●O●O三角形的外心是否一定在三角形的内部?第三十六页,共54页。9/21/2023从圆外一点向圆所引的两条切线长相等;并且这一点和圆心的连线平分两条切线的夹角.ABP●O┗┏12ABC●┗┏┓ODEF┗●ABC●O●┗┓ODEF┗切线长定理及其推论:直角三角形的内切圆半径与三边关系.三角形的内切圆半径与圆面积.∵PA,PB切⊙O于A,B∴PA=PB∠1=∠2第三十七页,共54页。等边三角形的外心与内心重合.特别的:内切圆半径与外接圆半径的比是1:2.OABCD第三十八页,共54页。9/21/2023二、过三点的圆及外接圆1.过一点的圆有________个2.过两点的圆有_________个,这些圆的圆心的都在_______________
上.3.过三点的圆有______________个4.如何作过不在同一直线上的三点的圆(或三角形的外接圆、找外心、破镜重圆、到三个村庄距离相等)5.锐角三角形的外心在三角形____,直角三角形的外心在三角形____,钝角三角形的外心在三角形____。无数无数0或1内外连结着两点的线段的垂直平分线在斜边的中点上第三十九页,共54页。9/21/2023经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。问题1:如何作三角形的外接圆?如何找三角形的外心?问题2:三角形的外心一定 在三角形内吗?∠C=90°▲ABC是锐角三角形▲ABC是钝角三角形第四十页,共54页。9/21/2023基础题:1.既有外接圆,又内切圆的平行四边形是______.2.直角三角形的外接圆半径为5cm,内切圆半径为1cm,则此三角形的周长是_______.3.⊙O边长为2cm的正方形ABCD的内切圆,E、F切⊙O于P点,交AB、BC于E、F,则△BEF的周长是_____.EFHG正方形22cm2cm第四十一页,共54页。9/21/20231.如图:圆O中弦AB等于半径R,则这条弦所对的圆心角是___,圆周角是______.60度30或150度第四十二页,共54页。9/21/2023不在同一直线上的三点确定一个圆.O..C.B.A三角形的外接圆与内切圆:三角形的外心就是三角形各边垂直平分线的交点..OABC三角形的内心就是三角形各角平分线的交点.第四十三页,共54页。9/21/2023等边三角形的外心与内心重合.特别的:内切圆半径与外接圆半径的比是1:2.OABCD第四十四页,共54页。9/21/2023二、过三点的圆及外接圆1.过一点的圆有________个2.过两点的圆有_________个,这些圆的圆心的都在_______________
上.3.过三点的圆有______________个4.如何作过不在同一直线上的三点的圆(或三角形的外接圆、找外心、破镜重圆、到三个村庄距离相等)5.锐角三角形的外心在三角形____,直角三角形的外心在三角形____,钝角三角形的外心在三角形____。无数无数0或1内外连结着两点的线段的垂直平分线在斜边的中点上第四十五页,共54页。9/21/2023经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。问题1:如何作三角形的外接圆?如何找三角形的外心?问题2:三角形的外心一定 在三角形内吗?∠C=90°▲ABC是锐角三角形▲ABC是钝角三角形第四十六页,共54页。9/21/20232:已知ABC三点在圆O上,连接ABCO,如果∠AOC=140
°,求∠B的度数.3.平面上一点P到圆O上一点的距离最长为6cm,最短为2cm,则圆O的半径为_______.D
解:在优弧AC上定一点D,连结AD、CD.∵∠AOC=140°
∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《预算员岗位培训》课件
- 4《古代诗歌三首》【知识精研】六年级语文下册课堂(统编版五四制2024)
- 《证券分析摸拟试题》课件
- 2025至2031年中国放气闷盖行业投资前景及策略咨询研究报告
- 2025至2031年中国彩色茶杯垫行业投资前景及策略咨询研究报告
- 2025至2031年中国婴儿防滑袜子行业投资前景及策略咨询研究报告
- 2025至2031年中国卡片式编织机行业投资前景及策略咨询研究报告
- 《静态场的边值问题》课件
- 《能环导论英》课件
- 《CFT生产流程图》课件
- 2024-2025学年陕西省西安市浐灞区数学三年级第一学期期末统考试题含解析
- 《钠离子电池用电解液编制说明》
- 全球医疗旅游经济的现状与未来趋势
- 2024年度储能电站在建项目收购合作协议范本3篇
- 新建冷却塔布水器项目立项申请报告
- 广东省梅州市梅县区2023-2024学年八年级上学期期末数学试题
- 护理人员的职业安全防护
- 2025届江苏省南通市海门市海门中学高三最后一模数学试题含解析
- 2024数据中心综合布线工程设计
- 胸外科讲课全套
- 2024年下半年中煤科工集团北京华宇工程限公司中层干部公开招聘易考易错模拟试题(共500题)试卷后附参考答案
评论
0/150
提交评论