




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省禹城市数学九上期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在中,.以为直径作半圆,交于点,交于点,若,则的度数是()A. B. C. D.2.如图,已知是的外接圆,是的直径,是的弦,,则等于()A. B. C. D.3.如图,在同一坐标系中(水平方向是x轴),函数和的图象大致是()A. B. C. D.4.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C. D.5.为了估计水塘中的鱼数,养鱼者先从鱼塘中捕获30条鱼,在每一条鱼身上做好标记后把这些鱼放归鱼塘,再从鱼塘中打捞鱼。通过多次实验后发现捕捞的鱼中有作记号的频率稳定在2.5%左右,则鱼塘中鱼的条数估计为()A.600条 B.1200条 C.2200条 D.3000条6.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛 B.守株待兔C.明天是晴天 D.在只装有5个红球的袋中摸出1球,是红球.7.已知正比例函数的函数值随自变量的增大而增大,则二次函数的图象与轴的交点个数为()A.2 B.1 C.0 D.无法确定8.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于()A. B. C.3 D.29.如图,将沿着弦翻折,劣弧恰好经过圆心.如果半径为4,那么的弦长度为A. B. C. D.10.抛物线y=x2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是()A.y=(x+1)2+3 B.y=(x+1)2﹣3C.y=(x﹣1)2﹣3 D.y=(x﹣1)2+311.已知,则()A.1 B.2 C.4 D.812.如图,已知等边的边长为,以为直径的圆交于点,以为圆心,为半径作圆,是上一动点,是的中点,当最大时,的长为()A. B. C. D.二、填空题(每题4分,共24分)13.如图,用一张半径为10cm的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8cm,那么这张扇形纸板的弧长是________cm.14.如图,与正五边形ABCDE的边AB、DE分别相切于点B、D,则劣弧所对的圆心角的大小为_____度.15.将数12500000用科学计数法表示为__________.16.如图,是⊙的直径,,点、在⊙上,、的延长线交于点,且,,有以下结论:①;②劣弧的长为;③点为的中点;④平分,以上结论一定正确的是______.17.一个正n边形的一个外角等于72°,则n的值等于_____.18.已知反比例函数的图象经过点,则这个函数的表达式为__________.三、解答题(共78分)19.(8分)解方程:(1);(2).20.(8分)如图,矩形ABCD的对角线AC、BD交于点O,∠AOD=60°,AB=,AE⊥BD于点E,求OE的长.21.(8分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.22.(10分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个.商店若准备获利2000元,则售价应定为多少?这时应进货多少个?23.(10分)已知关于的一元二次方程(是常量),它有两个不相等的实数根.(1)求的取值范围;(2)请你从或或三者中,选取一个符合(1)中条件的的数值代入原方程,求解出这个一元二次方程的根.24.(10分)已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△PAB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.25.(12分)如图,已知在平面直角坐标系xOy中,直线y=x+与x轴交于点A,与y轴交于点B,点F是点B关于x轴的对称点,抛物线y=x2+bx+c经过点A和点F,与直线AB交于点C.(1)求b和c的值;(2)点P是直线AC下方的抛物线上的一动点,连结PA,PB.求△PAB的最大面积及点P到直线AC的最大距离;(3)点Q是抛物线上一点,点D在坐标轴上,在(2)的条件下,是否存在以A,P,D,Q为顶点且AP为边的平行四边形,若存在,直接写出点Q的坐标;若不存在,说明理由.26.若一个三位数的百位上的数字减去十位上的数字等于其个位上的数字,则称这个三位数为“差数”,同时,如果百位上的数字为、十位上的数字为,三位数是“差数”,我们就记:,其中,,.例如三位数1.∵,∴1是“差数”,∴.(1)已知一个三位数的百位上的数字是6,若是“差数”,,求的值;(2)求出小于300的所有“差数”的和,若这个和为,请判断是不是“差数”,若是,请求出;若不是,请说明理由.
参考答案一、选择题(每题4分,共48分)1、A【分析】连接BE、AD,根据直径得出∠BEA=∠ADB=90°,求出∠ABE、∠DAB、∠DAC的度数,根据圆周角定理求出即可.【题目详解】解:连接BE、AD,
∵AB是圆的直径,
∴∠ADB=∠AEB=90°,
∴AD⊥BC,
∵AB=AC,∠C=70°,
∴∠ABD=∠C=70°.∠BAC=2∠BAD∴.∠BAC=2∠BAD=2(90°-70°)=40°,∵∠BAC+=90°
∴=50°.故选A.【题目点拨】本题考查了圆周角定理,等腰三角形的性质等知识,准确作出辅助线是解题的关键.2、C【分析】由直径所对的圆周角是直角,可得∠ADB=90°,可计算出∠BAD,再由同弧所对的圆周角相等得∠BCD=∠BAD.【题目详解】∵是的直径∴∠ADB=90°∴∠BAD=90°-∠ABD=32°∴∠BCD=∠BAD=32°.故选C.【题目点拨】本题考查圆周角定理,熟练运用该定理将角度进行转换是关键.3、A【分析】根据一次函数及反比例函数的图象与系数的关系作答.【题目详解】解:A、由函数y=的图象可知k>0与y=kx+3的图象k>0一致,正确;B、由函数y=的图象可知k>0与y=kx+3的图象k>0,与3>0矛盾,错误;C、由函数y=的图象可知k<0与y=kx+3的图象k<0矛盾,错误;D、由函数y=的图象可知k>0与y=kx+3的图象k<0矛盾,错误.故选A.【题目点拨】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.4、D【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【题目详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【题目点拨】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.5、B【分析】由题意已知鱼塘中有记号的鱼所占的比例,用样本中的鱼除以鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【题目详解】解:30÷2.5%=1.故选:B.【题目点拨】本题考查统计中用样本估计总体的思想,熟练掌握并利用样本总量除以所求量占样本的比例即可估计总量.6、D【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【题目详解】解:打开电视机,正在播放篮球比赛是随机事件,不符合题意;守株待兔是随机事件,不符合题意;明天是晴天是随机事件,不符合题意在只装有5个红球的袋中摸出1球,是红球是必然事件,D符合题意.故选:D.【题目点拨】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、A【分析】根据正比例函数的性质可以判断k的正负情况,然后根据△的正负,即可判断二次函数的图象与轴的交点个数,本题得以解决.【题目详解】∵正比例函数的函数值随自变量的增大而增大,∴k>0,∵二次函数为∴△=[−2(k+1)]2−4×1×(k2−1)=8k+8>0,∴二次函数为与轴的交点个数为2,故选:A.【题目点拨】本题考查二次函数与x轴的交点个数和正比例函数的性质,解答本题的关键是明确题意,利用根的判别式来解答.8、B【解题分析】如图所示:∵OA、OP是定值,∴在△OPA中,当∠OPA取最大值时,PA取最小值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=3√,OP=3,∴PA=故选B.点睛:本题考查了垂径定理、圆周角定理、勾股定理的应用.解答此题的关键是找出“PA⊥OA时,∠OPA最大”这一隐含条件.当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.9、D【分析】如果过O作OC⊥AB于D,交折叠前的AB弧于C,根据折叠后劣弧恰好经过圆心O,根据垂径定理及勾股定理即可求出AD的长,进而求出AB的长.【题目详解】解:如图,过O作OC⊥AB于D,交折叠前的AB弧于C,
根据折叠后劣弧恰好经过圆心O,那么可得出的是OD=CD=2,
直角三角形OAD中,OA=4,OD=2,
∴AD=∴AB=2AD=,故选:D.【题目点拨】本题考查了垂径定理和勾股定理的综合运用,利用好条件:劣弧折叠后恰好经过圆心O是解题的关键.10、D【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【题目详解】抛物线y=x2先向右平移1个单位得y=(x﹣1)2,再向上平移3个单位得y=(x﹣1)2+3.故选D.【题目点拨】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k
(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.11、C【分析】根据比例的性质得出再代入要求的式子,然后进行解答即可.【题目详解】解:∵,∴a=4b,c=4d,∴,故选C.【题目点拨】此题考查了比例的性质,熟练掌握比例线段的性质是解题的关键,是一道基础题.12、B【分析】点E在以F为圆心的圆上运动,要使AE最大,则AE过F,根据等腰三角形的性质和圆周角定理证得F是BC的中点,从而得到EF为△BCD的中位线,根据平行线的性质证得,根据勾股定理即可求得结论.【题目详解】点D在C上运动时,点E在以F为圆心的圆上运动,要使AE最大,则AE过F,连接CD,∵△ABC是等边三角形,AB是直径,∴,∴F是BC的中点,∴E为BD的中点,∴EF为△BCD的中位线,∴,∴,,,故,故选B.【题目点拨】本题考查了圆的动点问题,掌握等腰三角形的性质、圆周角定理、中位线定理、平行线的性质和勾股定理是解题的关键.二、填空题(每题4分,共24分)13、【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【题目详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为cm,∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【题目点拨】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.14、1【分析】根据正多边形内角和公式可求出、,根据切线的性质可求出、,从而可求出,然后根据圆弧长公式即可解决问题.【题目详解】解:五边形ABCDE是正五边形,.AB、DE与相切,,,故答案为1.【题目点拨】本题主要考查了切线的性质、正五边形的性质、多边形的内角和公式、熟练掌握切线的性质是解决本题的关键.15、【分析】根据科学记数法的定义以及应用将数进行表示即可.【题目详解】故答案为:.【题目点拨】本题考查了科学记数法的定义以及应用,掌握科学记数法的定义以及应用是解题的关键.16、①②③【分析】①根据圆内接四边形的外角等于其内对角可得∠CBE=∠ADE,根据等边对等角得出∠CBE=∠E,等量代换即可得到∠ADE=∠E;②根据圆内接四边形的外角等于其内对角可得∠A=∠BCE=70,根据等边对等角以及三角形内角和定理求出∠AOB=40,再根据弧长公式计算得出劣弧的长;③根据圆周角定理得出∠ACD=90,即AC⊥DE,根据等角对等边得出AD=AE,根据等腰三角形三线合一的性质得出∠DAC=∠EAC,再根据圆周角定理得到点C为的中点;④由DB⊥AE,而∠A≠∠E,得出BD不平分∠ADE.【题目详解】①∵ABCD是⊙O的内接四边形,∴∠CBE=∠ADE,∵CB=CE,∴∠CBE=∠E,∴∠ADE=∠E,故①正确;②∵∠A=∠BCE=70,∴∠AOB=40,∴劣弧的长=,故②正确;③∵AD是⊙O的直径,∴∠ACD=90,即AC⊥DE,∵∠ADE=∠E,∴AD=AE,∴∠DAC=∠EAC,∴点C为的中点,故③正确;④∵DB⊥AE,而∠A≠∠E,∴BD不平分∠ADE,故④错误.所以正确结论是①②③.故答案为①②③.【题目点拨】本题考查了圆内接四边形的性质,圆周角定理,弧长的计算,等腰三角形的判定与性质,三角形内角和定理,掌握相关性质及公式是解题的关键.17、1.【分析】可以利用多边形的外角和定理求解.【题目详解】解:∵正n边形的一个外角为72°,∴n的值为360°÷72°=1.故答案为:1【题目点拨】本题考查了多边形外角和,熟记多边形的外角和等于360度是解题的关键.18、【分析】把点的坐标代入根据待定系数法即可得解.【题目详解】解:∵反比例函数y=经过点M(-3,2),
∴2=,
解得k=-6,
所以,反比例函数表达式为y=.
故答案为:y=.【题目点拨】本题考查了待定系数法求反比例函数解析式,是求函数解析式常用的方法,需要熟练掌握并灵活运用.三、解答题(共78分)19、(1);(2)【分析】(1)化为一般形式后,用公式法求解即可.(2)用因式分解法提取公因式即可.【题目详解】(1)原方程可化为,得(2),所以.【题目点拨】本题考查的是一元二次方程的解法,能根据方程的特点灵活的选择解方程的方法是关键.20、1【分析】矩形对角线相等且互相平分,即OA=OD,根据∠AOD=60°可得△AOD为等边三角形,即OA=AD,∵AE⊥BD,∴E为OD的中点,即可求OE的值.【题目详解】解:∵对角线相等且互相平分,∴OA=OD∵∠AOD=60°∴△AOD为等边三角形,则OA=AD,BD=2DO,AB=AD,∴AD=2,∵AE⊥BD,∴E为OD的中点∴OE=OD=AD=1,答:OE的长度为1.【题目点拨】本题考查了矩形对角线的性质,利用矩形对角线相等是解题关键.21、(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【分析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②PB=PC;③BP=BC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【题目详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当PB=PC时,OP=OB=3,∴P3(0,-3);③当BP=BC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.22、当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.【解题分析】试题分析:利用销售利润=售价-进价,根据题中条件可以列出利润与的关系式,求出即可.试题解析:设每个商品的定价是元.由题意,得整理,得解得都符合题意.答:当该商品每个单价定为50元时,进货200个;每个单价为60元时,进货100个.23、(1);(2),【分析】(1)由一元二次方程有两个不相等的实数根,根据根的判别式,建立关于k的不等式,即可求出k的取值范围;(2)在k的取值范围内确定一个k的值,代入求得方程的解即可.【题目详解】解:(1)由题意,得整理,得,所以的取值范围是;(2)由(1),知,所以在或或三者中取,将代入原方程得:,化简得:,因式分解得:,解得两根为,.【题目点拨】本题考查了一元二次方程根的判别式及因式分解法解一元二次方程的知识,题目难度一般,需要注意计算的准确度和正确确定k的值.24、(1)y=﹣x2﹣2x+3(2)(﹣,)(3)存在,P(﹣2,3)或P(,)【分析】(1)用待定系数法求解;(2)过点P作PH⊥x轴于点H,交AB于点F,直线AB解析式为y=x+3,设P(t,﹣t2﹣2t+3)(﹣3<t<0),则F(t,t+3),则PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t,根据S△PAB=S△PAF+S△PBF写出解析式,再求函数最大值;(3)设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3),PD=﹣t2﹣3t,由抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4,由对称轴为直线x=﹣1,PE∥x轴交抛物线于点E,得yE=yP,即点E、P关于对称轴对称,所以=﹣1,得xE=﹣2﹣xP=﹣2﹣t,故PE=|xE﹣xP|=|﹣2﹣2t|,由△PDE为等腰直角三角形,∠DPE=90°,得PD=PE,再分情况讨论:①当﹣3<t≤﹣1时,PE=﹣2﹣2t;②当﹣1<t<0时,PE=2+2t【题目详解】解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△PAB=S△PAF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△PAB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴yE=yP,即点E、P关于对称轴对称∴=﹣1∴xE=﹣2﹣xP=﹣2﹣t∴PE=|xE﹣xP|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.【题目点拨】考核知识点:二次函数的综合.数形结合分析问题,运用轴对称性质和等腰三角形性质分析问题是关键.25、(1)b=,c=﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合作拍摄电视剧合同(6篇)
- Unit 1 Section A (2a~2d)教学设计 -2024-2025学年人教版八年级英语下册
- 微笑面对困难演讲稿(9篇)
- 2025-2026年保险业的智能化与市场需求
- 四年级信息技术上册 大富翁银行娱乐厅教学设计 龙教版
- 2025年广安货运上岗证考试多少道题
- 开学典礼发言稿(17篇)
- 《古代水利工程奇迹:都江堰教学课件》课件
- 2025实习自我鉴定3(19篇)
- 2025应届毕业生自我鉴定范文(19篇)
- 脓毒血症疑难病例讨论护理
- CRTSⅢ型板式无砟轨道工程施工质量验收标准
- 湖北省武汉市武昌区拼搏联盟2023-2024学年下学期期中八年级英语试卷
- 胸腔引流管脱出应急预案
- 夸美纽斯完整版本
- Q-GDW 644-2011 配网设备状态检修导则
- 住宅小区保安管理方案
- 太平洋保险入职测评题库及答案
- 2024年第五届全国版图知识竞赛真题模拟汇编
- 劳动实践:烹饪与营养
- 基于人工智能的智能客服系统设计与实现
评论
0/150
提交评论