版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省峄城区底阁镇中学2024届九年级数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,与x轴交于A、B(-1,0),与y轴交于C.下列结论错误的是()A.二次函数的最大值为a+b+c B.4a-2b+c﹤0C.当y>0时,-1﹤x﹤3 D.方程ax2+bx+c=-2解的情况可能是无实数解,或一个解,或二个解.2.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F.若AC=2,则OF的长为()A. B. C.1 D.23.如图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为()A. B. C. D.4.如图,在中,点D为AC边上一点,则CD的长为()A.1 B. C.2 D.5.如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边落在对角线BD上,点A落在点A'处,折痕为DG,求AG的长为()A.1.5 B.2 C.2.5 D.36.某汽车行驶时的速度v(米/秒)与它所受的牵引力F(牛)之间的函数关系如图所示.当它所受牵引力为1200牛时,汽车的速度为()A.180千米/时 B.144千米/时 C.50千米/时 D.40千米/时7.如图,一条抛物线与x轴相交于A、B两点(点A在点B的左侧),其顶点P在线段MN上移动.若点M、N的坐标分别为(-1,-1)、(2,-1),点B的横坐标的最大值为3,则点A的横坐标的最小值为()A.-3 B.-2.5 C.-2 D.-1.58.如图:已知AB=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是()A.5 B.4 C.3 D.09.如图所示,∆ABC的顶点在正方形网格的格点上,则cosB=()A. B. C. D.10.将二次函数通过配方可化为的形式,结果为()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,点,,均在的正方形网格格点上,过,,三点的外接圆除经过,,三点外还能经过的格点数为.12.如图,⊙O的半径为6,四边形ABCD内接于⊙O,连接OB,OD,若∠BOD=∠BCD,则弧BD的长为________.13.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是_____.14.一元二次方程的根是.15.已知方程的两实数根的平方和为,则k的值为____.16.如图,在菱形ABCD中,边长为1,∠A=60˚,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去,…,则四边形A2019B2019C2019D2019的面积是_____.17.若点、在同一个反比例函数的图象上,则的值为________.18.如图,在四边形ABCD中,∠DAB=120°,∠DCB=60°,CB=CD,AC=8,则四边形ABCD的面积为__.三、解答题(共66分)19.(10分)用适当的方法解下列一元二次方程:(1);(2).20.(6分)如图,AN是⊙O的直径,四边形ABMN是矩形,与圆相交于点E,AB=15,D是⊙O上的点,DC⊥BM,与BM交于点C,⊙O的半径为R=1.(1)求BE的长.(2)若BC=15,求的长.21.(6分)如图,直线分别交轴于A、C,点P是该直线与反比例函数在第一象限内的一个交点,PB⊥轴于B,且S△ABP=1.(1)求证:△AOC∽△ABP;(2)求点P的坐标;(3)设点R与点P在同一个反比例函数的图象上,且点R在直线PB的右侧,作RT⊥轴于T,当△BRT与△AOC相似时,求点R的坐标.22.(8分)如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相交于点C,直线y2=kx+b经过点B,C.(1)求直线BC的函数关系式;(2)当y1>y2时,请直接写出x的取值范围.23.(8分)如图,已知点A,B的坐标分别为(4,0),(3,2).(1)画出△AOB关于原点O对称的图形△COD;(2)将△AOB绕点O按逆时针方向旋转90°得到△EOF,画出△EOF;(3)点D的坐标是,点F的坐标是,此图中线段BF和DF的关系是.24.(8分)如图,已知、两点的坐标分别为,,直线与反比例函数的图象相交于点和点.(1)求直线与反比例函数的解析式;(2)求的度数;(3)将绕点顺时针方向旋转角(为锐角),得到,当为多少度时,并求此时线段的长度.25.(10分)在一个不透明的口袋里有标号为的五个小球,除数字不同外,小球没有任何区别,摸球前先搅拌均匀,每次摸一个球.(1)下列说法:①摸一次,摸出一号球和摸出号球的概率相同;②有放回的连续摸次,则一定摸出号球两次;③有放回的连续摸次,则摸出四个球标号数字之和可能是.其中正确的序号是(2)若从袋中不放回地摸两次,求两球标号数字是一奇一偶的概率,(用列表法或树状图)26.(10分)解方程:x2-5=4x.
参考答案一、选择题(每小题3分,共30分)1、D【分析】A.根据对称轴为时,求得顶点对应的y的值即可判断;B.根据当时,函数值小于0即可判断;C.根据抛物线与轴的交点坐标即可判断.D.根据抛物线与直线的交点情况即可判断.【题目详解】A.∵当时,,根据图象可知,,正确.不符合题意;B.∵当时,,根据图象可知,,正确.不符合题意;C.∵抛物线是轴对称图形,对称轴是直线,点,所以与轴的另一个交点的坐标为,根据图象可知:当时,,正确.不符合题意;D.根据图象可知:抛物线与直线有两个交点,∴关于的方程有两个不相等的实数根,本选项错误,符合题意.故选:D.【题目点拨】本题考查了二次函数与系数的关系、根的判别式、抛物线与x轴的交点,掌握二次函数的性质、二次函数图象与系数的关系是解题的关键.2、C【题目详解】解:∵OD⊥AC,∴AD=AC=1,∵OE∥AC,∴∠DAO=∠FOE,∵OD⊥AC,EF⊥AB,∴∠ADO=∠EFO=90°,在△ADO和△OFE,∵∠DAO=∠FOE,∠ADO=∠EFO,AO=OE,∴△ADO≌△OFE,∴OF=AD=1,故选C.【题目点拨】本题考查1.全等三角形的判定与性质;2.垂径定理,掌握相关性质定理正确推理论证是解题关键.3、A【解题分析】列表得:红黄蓝红(红,红)(黄,红)(蓝,红)黄(红,黄)(黄,黄)(蓝,黄)蓝(红,蓝)(黄,蓝)(蓝,蓝)由表格可知,所有等可能的情况数有9种,其中颜色相同的情况有3种,则任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为.故选A.4、C【解题分析】根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.【题目详解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故选:C.【题目点拨】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.5、A【分析】由在矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,由折叠的性质,即可求得A′B的长,然后设AG=x,由勾股定理即可得:,解此方程即可求得答案.【题目详解】解:∵四边形ABCD是矩形,∴∴由折叠的性质,可得:A′D=AD=3,A′G=AG,∴A′B=BD−A′D=5−3=2,设AG=x,则A′G=x,BG=AB−AG=4−x,在Rt△A′BG中,由勾股定理得:∴解得:∴故选:A.【题目点拨】考查折叠的性质,矩形的性质,勾股定理等知识点,熟练掌握折叠的性质是解题的关键.6、C【分析】根据图像可知为反比例函数,图像过点(3000,20),代入(k),即可求出反比例函数的解析式,再求出牵引力为1200牛时,汽车的速度即可.【题目详解】设函数为(k),代入(3000,20),得,得k=60000,∴,∴牵引力为1200牛时,汽车的速度为=50千米/时,故选C.【题目点拨】此题主要考查反比例函数的应用,解题的关键是找到已知条件求出反比例函数的解析式.7、C【分析】根据顶点P在线段MN上移动,又知点M、N的坐标分别为(-1,-2)、(1,-2),分别求出对称轴过点M和N时的情况,即可判断出A点坐标的最小值.【题目详解】解:根据题意知,点B的横坐标的最大值为3,当对称轴过N点时,点B的横坐标最大,∴此时的A点坐标为(1,0),当对称轴过M点时,点A的横坐标最小,此时的B点坐标为(0,0),∴此时A点的坐标最小为(-2,0),∴点A的横坐标的最小值为-2,故选:C.【题目点拨】本题主要考查二次函数的综合题的知识点,解答本题的关键是熟练掌握二次函数的图象对称轴的特点,此题难度一般.8、C【分析】本题通过做辅助线构造新三角形,继而利用等边三角形性质求证四边形HFPE为平行四边形,进一步结合点G中点性质确定点G运动路径为△HCD中位线,最后利用中位线性质求解.【题目详解】延长AE与BF使其相交于点H,连接HC、HD、HP,如下图所示:由已知得:∠A=∠FPB=60°,∠B=∠EPA=60°,∴AH∥PF,BH∥PE,∴四边形HFPE为平行四边形,∴EF与PH互相平分,又∵点G为EF中点,∴点G为PH中点,即在点P运动过程中,点G始终为PH的中点,故点G的运动轨迹为△HCD的中位线MN.∵,,∴,∴,即点G的移动路径长为1.故选:C.【题目点拨】本题考查等边三角形性质以及动点问题,此类型题目难点在于辅助线的构造,需要多做类似题目积累题感,涉及动点运动轨迹时,其路径通常是较为特殊的线段或图形,例如中位线或圆.9、C【分析】先设小正方形的边长为1,再建构直角三角形,然后根据锐角三角函数的定义求解即可;【题目详解】解:如图,过A作AD⊥CB于D,设小正方形的边长为1,则BD=AD=3,AB=∴cos∠B=;故选C.【题目点拨】本题主要考查了锐角三角函数的定义,勾股定理,掌握锐角三角函数的定义,勾股定理是解题的关键.10、A【分析】根据完全平方公式:配方即可.【题目详解】解:==故选A.【题目点拨】此题考查的是利用配方法将二次函数的一般式化为顶点式,掌握完全平方公式是解决此题的关键.二、填空题(每小题3分,共24分)11、1.【解题分析】试题分析:根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这1个格点,故答案为1.考点:圆的有关性质.12、4π【解题分析】根据圆内接四边形对角互补可得∠BCD+∠A=180°,再根据同弧所对的圆周角与圆心角的关系以及∠BOD=∠BCD,可求得∠A=60°,从而得∠BOD=120°,再利用弧长公式进行计算即可得.【题目详解】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的长=,故答案为4π.【题目点拨】本题考查了圆周角定理、弧长公式等,求得∠A的度数是解题的关键.13、(1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【题目详解】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为(1,﹣2).【题目点拨】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.14、【解题分析】四种解一元二次方程的解法即:直接开平方法,配方法,公式法,因式分解法.注意识别使用简单的方法进行求解,此题应用因式分解法较为简捷,因此,.15、3【分析】根据一元二次方程根与系数的关系,得出和的值,然后将平方和变形为和的形式,代入便可求得k的值.【题目详解】∵,设方程的两个解为则,∵两实根的平方和为,即=∴解得:k=3或k=-11∵当k=-11时,一元二次方程的△<0,不符,需要舍去故答案为:3【题目点拨】本题考查根与系数的关系,注意在最后求解出2个值后,有一个值不符需要舍去.16、【分析】连接AC、BD,根据菱形的面积公式,得S菱形ABCD=,进而得矩形A1B1C1D1的面积,菱形A2B2C2D2的面积,以此类推,即可得到答案.【题目详解】连接AC、BD,则AC⊥BD,∵菱形ABCD中,边长为1,∠A=60°,∴S菱形ABCD=AC∙BD=1×1×sin60°=,∵顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1,∴四边形A1B1C1D1是矩形,∴矩形A1B1C1D1的面积=AC∙BD=AC∙BD=S菱形ABCD==,菱形A2B2C2D2的面积=×矩形A1B1C1D1的面积=S菱形ABCD==,……,∴四边形A2019B2019C2019D2019的面积=,故答案为:.【题目点拨】本题主要考查菱形得性质和矩形的性质,掌握菱形的面积公式,是解题的关键.17、【分析】设反比例函数的解析式为(k为常数,k≠0),把A(3,8)代入函数解析式求出k,得出函数解析式,把B点的坐标代入,即可求出答案.【题目详解】解:设反比例函数的解析式为(k为常数,k≠0),把A(3,8)代入函数解析式得:k=24,即,把B点的坐标代入得:故答案为−6.【题目点拨】考查待定系数法求反比例函数解析式,熟练掌握待定系数法是解题的关键.18、16【分析】延长AB至点E,使BE=DA,连接CE,作CF⊥AB于F,证明△CDA≌△CBE,根据全等三角形的性质得到CA=CE,∠BCE=∠DCA,得到△CAE为等边三角形,根据等边三角形的性质计算,得到答案.【题目详解】延长AB至点E,使BE=DA,连接CE,作CF⊥AB于F,∵∠DAB+∠DCB=120°+60°=180°,∴∠CDA+∠CBA=180°,又∠CBE+∠CBA=180°,∴∠CDA=∠CBE,在△CDA和△CBE中,,∴△CDA≌△CBE(SAS)∴CA=CE,∠BCE=∠DCA,∵∠DCB=60°,∴∠ACE=60°,∴△CAE为等边三角形,∴AE=AC=8,CF=AC=4,则四边形ABCD的面积=△CAB的面积=×8×4=16,故答案为:16.【题目点拨】考核知识点:等边三角形判定和性质,三角函数.作辅助线,构造直角三角形是关键.三、解答题(共66分)19、(1);(2)【分析】(1)利用提取公因式的方法因式分解,然后解一元二次方程即可;(2)利用平方差公式分解因式,然后解一元二次方程即可.【题目详解】(1)原方程变形为,或,解得;(2)原方程变形为:,即,或,解得.【题目点拨】本题主要考查解一元二次方程,掌握因式分解法是解题的关键.20、(1)1﹣15;(2)15π【分析】(1)连接OE,过O作OF⊥BM于F,在Rt△OEF中,由勾股定理得出EF的长,进而求得EB的长.(2)连接OD,则在直角三角形ODQ中,可求得∠QOD=60°,过点E作EH⊥AO于H,在直角三角形OEH中,可求得∠EOH=1°,则得出的长度.【题目详解】解:(1)连接OE,过O作OF⊥BM于F,则四边形ABFO是矩形,∴FO=AB=15,BF=AO,在Rt△OEF中,EF==15,∵BF=AO=1,∴BE=1﹣15.(2)连接OD,在直角三角形ODQ中,∵OD=1,OQ=1﹣15=15,∴∠ODQ=1°,∴∠QOD=60°,过点E作EH⊥AO于H,在直角三角形OEH中,∵OE=1,EH=15,∴,∴∠EOH=1°,∴∠DOE=90°,∴=π•60=15π.【题目点拨】本题考查了直角三角形的性质,弧长的计算、矩形的性质以及垂径定理,是基础知识要熟练掌握.21、(1)详见解析;(2)P为(2,3);(3)R()或(3,0)【分析】(1)由一对公共角相等,一对直角相等,利用两对角相等的三角形相似即可得证;
(2)先求出点A、C的坐标,设出A(x,0),C(0,y)代入直线的解析式可知;由△AOC∽△ABP,利用线段比求出BP,AB的值从而可求出点P的坐标即可;
(3)把P坐标代入求出反比例函数,设R点坐标为(),根据△BRT与△AOC相似分两种情况,利用线段比建立方程,求出a的值,即可确定出R坐标.【题目详解】解:(1)∵∠CAO=∠PAB,∠AOC=∠ABP=10°,∴△AOC∽△ABP;(2)设A(x,0),C(0,y)由题意得:,解得:,
∴A(-4,0),C(0,2),即AO=4,OC=2,
又∵S△ABP=1,
∴AB•BP=18,
又∵PB⊥x轴,
∴OC∥PB,
∴△AOC∽△ABP,
∴,即,
∴2BP=AB,
∴2BP2=18,
∴BP2=1,
∴BP=3,
∴AB=6,
∴P点坐标为(2,3);(3)设反比例函数为,则,即,可设R点为(),则RT=,TB=①要△BRT∽△ACO,则只要,∴,解得:,∴;∴点R的坐标为:(,);②若△BRT∽△CAO,则只要,∴,解得:,∴,∴点R的坐标为:(3,2);综合上述可知,点R为:()或(3,2).【题目点拨】此题属于反比例函数综合题,涉及的知识有:待定系数法求函数解析式,相似三角形的判定与性质,一次函数与反比例函数的交点,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.22、(1)y=x-1;(2)当y1>y2时,x<0和x>1.【分析】(1)根据抛物线的解析式求出A、B、C的解析式,把B、C的坐标代入直线的解析式,即可求出答案;(2)根据B、C点的坐标和图象得出即可.【题目详解】解:(1)抛物线y1=x2-2x-1,当x=0时,y=-1,当y=0时,x=1或-1,即A的坐标为(-1,0),B的坐标为(1,0),C的坐标为(0,-1),把B、C的坐标代入直线y2=kx+b得:,解得:k=1,b=-1,即直线BC的函数关系式是y=x-1;(2)∵B的坐标为(1,0),C的坐标为(0,-1),如图,∴当y1>y2时,x的取值范围是x<0或x>1.【题目点拨】本题考查了一次函数和二次函数图象上点的坐标特征、用待定系数法求一次函数的解析式和二次函数与一次函数的图象等知识点,能求出B、C的坐标是解此题的关键.23、(1)见解析;(2)见解析;(3)D(﹣3,﹣2),F(﹣2,3),垂直且相等【分析】(1)分别延长BO,AO到占D,C,使DO=BO,CO=AO,再顺次连接成△COD即可;
(2)将A,B绕点O按逆时针方向旋转90°得到对应点E,F,再顺次连接即可得出△EOF;
(3)利用图象即可得出点的坐标,以及线段BF和DF的关系.【题目详解】(1)如图所示:(2)如图所示:(3)结合图象即可得出:D(﹣3,﹣2),F(﹣2,3),线段BF和DF的关系是:垂直且相等.【题目点拨】此题考查了图形的旋转变换以及图形旋转的性质,难度不大,注意掌握解答此类题目的关键步骤.24、(1)直线AB的解析式为,反比例函数的解析式为;(2)∠ACO=30°;(3)当为60°时,OC'⊥AB,AB'=1.【分析】(1)设直线AB的解析式为y=kx+b(k≠0),将A与B坐标代入求出k与b的值,确定出直线AB的解析式,将D坐标代入直线AB解析式中求出n的值,确定出D的坐标,将D坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;(2)联立两函数解析式求出C坐标,过C作CH垂直于x轴,在直角三角形OCH中,由OH与HC的长求出tan∠COH的值,利用特殊角的三角函数值求出∠COH的度数,在三角形AOB中,由OA与OB的长求出tan∠ABO的值,进而求出∠ABO的度数,由∠ABO-∠COH即可求出∠ACO的度数;(3)过点B1作B′G⊥x轴于点G,先求得∠OCB=30°,进而求得α=∠COC′=60°,根据旋转的性质,得出∠BOB′=α=60°,解直角三角形求得B′的坐标,然后根据勾股定理即可求得AB′的长.【题目详解】解:(1)设直线AB的解析式为y=kx+b(k≠0),将A(0,1),B(-1,0)代入得:解得,故直线AB解析式为y=x+1,将D(2,n)代入直线AB解析式得:n=2+1=6,则D(2,6),将D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025工伤赔偿的合同书模板
- it公司辞职报告范文
- 2025年贵阳货运从业资格证试题答题器app
- 2025赣州市商品房买卖合同空白
- 上海现代化工职业学院《大学化学A》2023-2024学年第一学期期末试卷
- 上海外国语大学贤达经济人文学院《社会化媒体营销》2023-2024学年第一学期期末试卷
- 上海外国语大学贤达经济人文学院《空间三维建模与仿真》2023-2024学年第一学期期末试卷
- 2025挡墙承包合同
- 上海思博职业技术学院《光电材料》2023-2024学年第一学期期末试卷
- 课题申报书:构建“四三”学校德育模式的实践研究
- 军事理论论述题大全
- 产业园EPC总承包工程项目施工组织设计
- 大学生安全教育智慧树知到答案章节测试2023年中国海洋大学
- 学校安全教育珍爱生命-拒绝打架斗殴课件
- YY/T 0698.7-2009最终灭菌医疗器械包装材料第7部分:环氧乙烷或辐射灭菌无菌屏障系统生产用可密封涂胶纸要求和试验方法
- GB/T 40276-2021柔巾
- GB/T 3750-2008卡套式铰接管接头
- GB/T 20944.3-2008纺织品抗菌性能的评价第3部分:振荡法
- 自然辩证法概论(新)
- 《政府会计》课后习题答案(第4-18章)
- 中小学音体美器材配备标准
评论
0/150
提交评论