2024届江苏省常州市金坛区水北中学数学九上期末统考模拟试题含解析_第1页
2024届江苏省常州市金坛区水北中学数学九上期末统考模拟试题含解析_第2页
2024届江苏省常州市金坛区水北中学数学九上期末统考模拟试题含解析_第3页
2024届江苏省常州市金坛区水北中学数学九上期末统考模拟试题含解析_第4页
2024届江苏省常州市金坛区水北中学数学九上期末统考模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省常州市金坛区水北中学数学九上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,矩形ABCD中,E是AB的中点,将△BCE沿CE翻折,点B落在点F处,tan∠BCE=.设AB=x,△ABF的面积为y,则y与x的函数图象大致为A. B.C. D.2.已知m是方程的一个根,则代数式的值等于()A.2005 B.2006 C.2007 D.20083.一枚质地均匀的骰子,它的六个面上分别有1到6的点数.下列事件中,是不可能事件的是()A.掷一次这枚骰子,向上一面的点数小于5B.掷一次这枚骰子,向上一面的点数等于5C.掷一次这枚骰子,向上一面的点数等于6D.掷一次这枚骰子,向上一面的点数大于64.已知点P(2a+1,a﹣1)关于原点对称的点在第一象限,则a的取值范围是()A.a<﹣或a>1 B.a<﹣ C.﹣<a<1 D.a>15.一个盒子中装有2个蓝球,3个红球和若干个黄球,小明通过多次摸球试验后发现,摸取到黄球的频率稳定在0.5左右,则黄球有()个.A.4 B.5 C.6 D.106.抛物线可由抛物线如何平移得到的()A.先向左平移3个单位,再向下平移2个单位B.先向左平移6个单位,再向上平移7个单位C.先向上平移2个单位,再向左平移3个单位D.先回右平移3个单位,再向上平移2个单位7.如图,在中,,,,以边的中点为圆心作半圆,使与半圆相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是()A.8 B.9 C.10 D.128.已知点在抛物线上,则下列结论正确的是()A. B. C. D.9.如图1,S是矩形ABCD的AD边上一点,点E以每秒kcm的速度沿折线BS-SD-DC匀速运动,同时点F从点C出发点,以每秒1cm的速度沿边CB匀速运动.已知点F运动到点B时,点E也恰好运动到点C,此时动点E,F同时停止运动.设点E,F出发t秒时,△EBF的面积为.已知y与t的函数图像如图2所示.其中曲线OM,NP为两段抛物线,MN为线段.则下列说法:①点E运动到点S时,用了2.5秒,运动到点D时共用了4秒;②矩形ABCD的两邻边长为BC=6cm,CD=4cm;③sin∠ABS=;④点E的运动速度为每秒2cm.其中正确的是()A.①②③ B.①③④ C.①②④ D.②③④10.已知圆锥的底面半径是4,母线长是9,则圆锥侧面展开图的面积是()A. B. C. D.11.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣212.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为()A.120° B.180° C.240° D.300°二、填空题(每题4分,共24分)13.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中、分别表示去年、今年水费(元)与用水量()之间的关系.小雨家去年用水量为150,若今年用水量与去年相同,水费将比去年多_____元.14.请你写出一个二次函数,其图象满足条件:①开口向下;②与轴的交点坐标为.此二次函数的解析式可以是______________15.已知,则__________.16.函数是关于反比例函数,则它的图象不经过______的象限.17.二次函数y=ax1+bx+c(a≠2)的部分图象如图,图象过点(﹣1,2),对称轴为直线x=1.下列结论:①4a+b=2;②9a+c>3b;③当x>﹣1时,y的值随x值的增大而增大;④当函数值y<2时,自变量x的取值范围是x<﹣1或x>5;⑤8a+7b+1c>2.其中正确的结论是_____.18.形状与抛物线相同,对称轴是直线,且过点的抛物线的解析式是________.三、解答题(共78分)19.(8分)计算:(1)已知,求的值;(2)6cos245°﹣2tan30°•tan60°.20.(8分)如图,BD、CE是的高.(1)求证:;(2)若BD=8,AD=6,DE=5,求BC的长.21.(8分)某便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能够售出240件.经过调查发现:如果每件涨价1元,那么每天就少售20件;如果每件降价1元,那么每天能够多售出40件.(1)如果降价,那么每件要降价多少元才能使销售盈利达到1960元?(2)如果涨价,那么每件要涨价多少元オ能使销售盈利达到1980元?22.(10分)如图,在中,,,,P是BC上一动点,过P作AP的垂线交CD于E,将翻折得到,延长FP交AB于H,连结AE,PE交AC于G.(1)求证;(2)当时,求AE的长;(3)当时,求AG的长.23.(10分)如图,四边形是的内接四边形,,,,求的长.24.(10分)解方程:(l)(2)(配方法).25.(12分)某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价元(为非负整数),每周的销量为件.(1)求与的函数关系式及自变量的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?26.如图所示,在平面直角坐标系中,抛物线的顶点坐标为,并与轴交于点,点是对称轴与轴的交点.(1)求抛物线的解析式;(2)如图①所示,是抛物线上的一个动点,且位于第一象限,连结BP、AP,求的面积的最大值;(3)如图②所示,在对称轴的右侧作交抛物线于点,求出点的坐标;并探究:在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、D【解题分析】设AB=x,根据折叠,可证明∠AFB=90°,由tan∠BCE=,分别表示EB、BC、CE,进而证明△AFB∽△EBC,根据相似三角形面积之比等于相似比平方,表示△ABF的面积.【题目详解】设AB=x,则AE=EB=x,由折叠,FE=EB=x,则∠AFB=90°,由tan∠BCE=,∴BC=x,EC=x,∵F、B关于EC对称,∴∠FBA=∠BCE,∴△AFB∽△EBC,∴,∴y=,故选D.【题目点拨】本题考查了三角函数,相似三角形,三角形面积计算,二次函数图像等知识,利用相似三角形的性质得出△ABF和△EBC的面积比是解题关键.2、D【分析】由m是方程x2-2006x+1=0的一个根,将x=m代入方程,得到关于m的等式,变形后代入所求式子中计算,即可求出值.【题目详解】解:∵m是方程x2-2006x+1=0的一个根,∴m2-2006m+1=0,即m2+1=2006m,m2=2006m−1,则=====2006+2=2008故选:D.【题目点拨】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3、D【分析】事先能肯定它一定不会发生的事件称为不可能事件,据此进行判断即可.【题目详解】解:A.掷一次这枚骰子,向上一面的点数小于5,属于随机事件,不合题意;B.掷一次这枚骰子,向上一面的点数等于5,属于随机事件,不合题意;C.掷一次这枚骰子,向上一面的点数等于6,属于随机事件,不合题意;D.掷一次这枚骰子,向上一面的点数大于6,属于不可能事件,符合题意;故选:D.【题目点拨】本题考查的知识点是不可能事件的定义,比较基础,易于掌握.4、B【分析】直接利用关于原点对称点的纵横坐标均互为相反数分析得出答案.【题目详解】点P(2a+1,a﹣1)关于原点对称的点(﹣2a﹣1,﹣a+1)在第一象限,则,解得:a<﹣.故选:B.【题目点拨】此题主要考查了关于原点对称点的性质以及不等式组的解法,正确解不等式是解题关键.5、B【分析】设黄球有x个,根据用频率估计概率和概率公式列方程即可.【题目详解】设黄球有x个,根据题意得:=0.5,解得:x=5,答:黄球有5个;故选:B.【题目点拨】此题考查的是用频率估计概率和根据概率求球的数量问题,掌握用频率估计概率和概率公式是解决此题的关键.6、A【分析】先将抛物线化为顶点式,然后按照“左加右减,上加下减”的规律进行求解即可.【题目详解】因为,所以将抛物线先向左平移3个单位,再向下平移2个单位即可得到抛物线,故选A.【题目点拨】本题考查了抛物线的平移以及抛物线解析式的变化规律,熟练掌握“左加右减,上加下减”的规律是解题的关键.7、C【分析】如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,如图当Q2在AB边上时,P2与A重合时,P2Q2最大值,由此不难解决问题.【题目详解】解:如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,

此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,

∵AB=20,AC=8,BC=6,

∴AB2=AC2+BC2,∴∠C=90°,

∵∠OP2A=90°,∴OP2∥BC.

∵O为AB的中点,∴P2C=P2A,OP2=BC=2.又∵BC是⊙O的切线,∴∠OEB=90°,∴OE∥AC,又O为AB的中点,∴OE=AC=4=OQ2.

∴P2Q2最小值为OQ2-OP2=4-2=2,

如图,当Q2在AB边上时,P2与A重合时,P2Q2经过圆心,经过圆心的弦最长,

P2Q2最大值=AO+OQ2=5+4=9,

∴PQ长的最大值与最小值的和是20.

故选:C.【题目点拨】本题考查切线的性质,三角形中位线定理,勾股定理的逆定理以及平行线的判定等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.8、A【分析】分别计算自变量为1和2对应的函数值,然后对各选项进行判断.【题目详解】当x=1时,y1=−(x+1)+2=−(1+1)+2=−2;当x=2时,y=−(x+1)+2=−(2+1)+2=−7;所以.故选A【题目点拨】此题考查二次函数顶点式以及二次函数的性质,解题关键在于分析函数图象的情况9、C【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设,,由函数图像利用△EBF面积列出方程组即可解决问题.③由,,得,设,,在中,由列出方程求出,即可判断.④求出即可解决问题.【题目详解】解:函数图像的拐点时点运动的变化点根据由图象可知点运动到点时用了2.5秒,运动到点时共用了4秒.故①正确.设,,由题意,解得,所以,,故②正确,,,,设,,在中,,,解得或(舍,,,,故③错误,,,,故④正确,故选:C.【题目点拨】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.10、D【分析】先根据圆的周长公式计算出圆锥的底面周长,然后根据扇形的面积公式,即可求出圆锥侧面展开图的面积.【题目详解】解:圆锥的底面周长为:2×4=,则圆锥侧面展开图的面积是.故选:D.【题目点拨】此题考查的是求圆锥的侧面面积,掌握圆的周长公式和扇形的面积公式是解决此题的关键.11、A【解题分析】试题分析:由题意知抛物线y=x2+2x+m﹣1与x轴有两个交点,所以△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故答案选A.考点:抛物线与x轴的交点.12、B【题目详解】试题分析:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,有=2πr=πR,∴n=180°.故选B.考点:圆锥的计算二、填空题(每题4分,共24分)13、1.【分析】根据函数图象中的数据可以求得时,对应的函数解析式,从而可以求得时对应的函数值,由的的图象可以求得时对应的函数值,从而可以计算出题目中所求问题的答案,本题得以解决.【题目详解】设当时,对应的函数解析式为,,得,即当时,对应的函数解析式为,当时,,由图象可知,去年的水价是(元/),故小雨家去年用水量为150,需要缴费:(元),(元),即小雨家去年用水量为150,若今年用水量与去年相同,水费将比去年多1元,故答案为:1.【题目点拨】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.14、【分析】根据二次函数图像和性质得a0,c=3,即可设出解析式.【题目详解】解:根据题意可知a0,c=3,故二次函数解析式可以是【题目点拨】本题考查了二次函数的性质,属于简单题,熟悉概念是解题关键.15、【分析】根据比例的性质,由得,x=,再将其代入所求式子可得出结果.【题目详解】解:由得,x=,所以.故答案为:.【题目点拨】此题考查了比例的性质,熟练掌握比例的性质是解题的关键,较简单.16、第一、三象限【解题分析】试题解析:函数是关于的反比例函数,解得:比例系数它的图象在第二、四象限,不经过第一、三象限.故答案为第一、三象限.17、①④⑤.【分析】根据二次函数图象的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系,逐项判断即可.【题目详解】解:抛物线过点(﹣1,2),对称轴为直线x=1.∴x==1,与x轴的另一个交点为(5,2),即,4a+b=2,故①正确;当x=﹣3时,y=9a﹣3b+c<2,即,9a+c<3b,因此②不正确;当x<1时,y的值随x值的增大而增大,因此③不正确;抛物线与x轴的两个交点为(﹣1,2),(5,2),又a<2,因此当函数值y<2时,自变量x的取值范围是x<﹣1或x>5,故④正确;当x=3时,y=9a+3b+c>2,当x=4时,y=16a+4b+c>2,∴15a+7b+1c>2,又∵a<2,∴8a+7b+c>2,故⑤正确;综上所述,正确的结论有:①④⑤,故答案为:①④⑤.【题目点拨】本题主要考查二次函数图像性质,解决本题的关键是要熟练掌握二次函数图像性质.18、或.【分析】先从已知入手:由与抛物线形状相同则相同,且经过点,即把代入得,再根据对称轴为可求出,即可写出二次函数的解析式.【题目详解】解:设所求的二次函数的解析式为:,与抛物线形状相同,,,又∵图象过点,∴,∵对称轴是直线,∴,∴当时,,当时,,所求的二次函数的解析式为:或.【题目点拨】本题考查了利用待定系数法求二次函数的解析式和二次函数的系数和图象之间的关系.解答时注意抛物线形状相同时要分两种情况:①开口向下,②开口向上;即相等.三、解答题(共78分)19、(1);(2)1.【分析】(1)先把化成,再代入计算即可;(2)根据特殊角的三角函数进行计算即可得出答案.【题目详解】(1)∵,∴,=+1,=;(2)6cos245°﹣2tan30°•tan60°,=6×()2﹣2××,=6×﹣2,=1.【题目点拨】本题主要考查了比例的性质和特殊角的三角函数值,解答本题的关键是掌握比例的性质和几个特殊三角函数值.20、(1)见解析;(2)BC=.【分析】(1)、是的高,可得,进而可以证明;(2)在中,,,根据勾股定理可得,结合(1),对应边成比例,进而证明,对应边成比例即可求出的长.【题目详解】解:(1)证明:、是的高,,,;(2)在中,,,根据勾股定理,得,,,,,,,.【题目点拨】本题考查了相似三角形的判定与性质,解决本题的关键是掌握相似三角形的判定与性质.21、(1)每件要降价1元才能使销售盈利达到1960元;(2)每件要涨价1元或3元オ能使销售盈利达到1980元.【分析】(1)设每件要降价x元,根据盈利=每件的利润×销售量即可列出关于x的方程,解方程即可求出结果;(2)设每件要涨价y元,根据盈利=每件的利润×销售量即可列出关于y的方程,解方程即可求出结果.【题目详解】解:(1)设每件要降价x元,根据题意,得,解得:,答:每件要降价1元才能使销售盈利达到1960元.(2)每件要涨价y元,根据题意,得,解得:,答:每件要涨价1元或3元オ能使销售盈利达到1980元.【题目点拨】本题考查了一元二次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.22、(1)见解析;(2);(3)【分析】(1)先证明P、C、F共线,由余角的性质可证,根据等角对等边证明,再由余角的性质证明和等角对等边证明,结论可证;(2)过A作于M,由勾股定理可求BC=4,然后求出MP的长,再由勾股定理求出AP的长,由是等腰直角三角形可求出AE的长;(3)通过证明,可得,由外角的性质可求出∠PAF=F=22.5°,再根据角的和差和三角形内角和定理证明,然后求出,然后通过证明,利用相似三角形的对应边成比例即可求解.【题目详解】(1)∵四边形ABCD是平行四边形,,∴,∴,又∵,∴,,故F在AC的延长线上.又,,而,∴,而,∴,∴,又,,∴,∴,∴,(2)过A作于M,∵,,∴BC=4,∴,,又∵,∴BP=3,CP=,∴,∴,由(1)知AP=AE,∴是等腰直角三角形,∴;(3)由,且得,∴,∴,∴,∴,∴,∵,∴,而∴,∴,∴,∴,∴.【题目点拨】本题考查了平行四边形的性质,余角的性质,等腰三角形的判定与性质,三角形外角的性质,勾股定理,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.23、.【分析】如图,连接,过点作于点,通过勾股定理确定OB、OC的长,利用AB与BE的关系确定最终答案.【题目详解】如解图所示,连接,过点作于点,,且,,在中,,,,,,,,,,,是的弦,过的圆心,且于点,,且,,,,.【题目点拨】本题考查的是圆内接四边形的性质、勾股定理,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.24、(1);(2)【分析】(1)利用因式分解法求解;(2)在左右两边同时加上一次项系数-8的一半的平方后配方,再开方,即可得出两个一元一次方程,即可求解.【题目详解】解:(1),,,∴或,所以;(2)∵,∴,即,则,∴.【题目点拨】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.25、(1),;(2)每件的售价是17元或者18元.【分析】(1)根据“每件的售价每涨1元,那么每周少卖10件”,即可求出y与x的函数关系式,然后根据x的实际意义和售价每件不能高于20元即可求出x的取值范围;(2)根据总利润=单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论