北京市首都师大附中2024届数学九上期末教学质量检测模拟试题含解析_第1页
北京市首都师大附中2024届数学九上期末教学质量检测模拟试题含解析_第2页
北京市首都师大附中2024届数学九上期末教学质量检测模拟试题含解析_第3页
北京市首都师大附中2024届数学九上期末教学质量检测模拟试题含解析_第4页
北京市首都师大附中2024届数学九上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市首都师大附中2024届数学九上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为()A.120° B.180° C.240° D.300°2.正方形ABCD内接于⊙O,若⊙O的半径是,则正方形的边长是()A.1 B.2 C. D.23.小明在太阳光下观察矩形木板的影子,不可能是()A.平行四边形 B.矩形 C.线段 D.梯形4.如图,下列条件中,能判定的是()A. B. C. D.5.已知如图,在正方形ABCD中,AD=4,E,F分别是CD,BC上的一点,且∠EAF=45°,EC=1,将△ADE绕点A沿顺时针方向旋转90°后与△ABG重合,连接EF,过点B作BM∥AG,交AF于点M,则以下结论:①DE+BF=EF,②BF=,③AF=,④S△MEF=中正确的是A.①②③ B.②③④ C.①③④ D.①②④6.丽华根据演讲比赛中九位评委所给的分数作了如下表格:平均数中位数众数方差8.58.38.10.15如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数 B.众数 C.方差 D.中位数7.下列四个点,在反比例函数y=图象上的是(

)A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1)8.如图,过反比例函数的图像上一点A作AB⊥轴于点B,连接AO,若S△AOB=2,则的值为()A.2 B.3 C.4 D.59.如图,在矩形中,.将向内翻折,点落在上,记为,折痕为.若将沿向内翻折,点恰好落在上,记为,则的长为()A. B. C. D.10.如图,是矩形内的任意一点,连接、、、,得到,,,,设它们的面积分别是,,,,给出如下结论:①②③若,则④若,则点在矩形的对角线上.其中正确的结论的序号是()A.①② B.②③ C.③④ D.②④11.二次根式中,的取值范围是()A. B. C. D.12.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.6二、填空题(每题4分,共24分)13.计算:=______.14.已知菱形中,,,边上有点点两动点,始终保持,连接取中点并连接则的最小值是_______.15.若一组数据1,2,x,4的平均数是2,则这组数据的方差为_____.16.如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tanC=_____.17.某校共1600名学生,为了解学生最喜欢的课外体育活动情况,学校随机抽查了200名学生,其中有92名学生表示喜欢的项目是跳绳,据此估计全校喜欢跳绳这项体育活动的学生有____________人.18.如图,反比例函数的图象位于第一、三象限,且图象上的点与坐标轴围成的矩形面积为2,请你在第三象限的图象上取一个符合题意的点,并写出它的坐标______________.三、解答题(共78分)19.(8分)如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).(1)求直线与双曲线的解析式.(2)点P在x轴上,如果S△ABP=3,求点P的坐标.20.(8分)参照学习函数的过程方法,探究函数的图像与性质,因为,即,所以我们对比函数来探究列表:…-4-3-2-11234……124-4-2-1……235-3-20…描点:在平面直角坐标系中以自变量的取值为横坐标,以相应的函数值为纵坐标,描出相应的点如图所示:(1)请把轴左边各点和右边各点分别用一条光滑曲线,顺次连接起来;(2)观察图象并分析表格,回答下列问题:①当时,随的增大而______;(“增大”或“减小”)②的图象是由的图象向______平移______个单位而得到的;③图象关于点______中心对称.(填点的坐标)(3)函数与直线交于点,,求的面积.21.(8分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当时,;②当时,(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.22.(10分)在毕业晚会上,同学们表演哪一类型的节目由自己摸球来决定.在一个不透明的口袋中,装有除标号外其它完全相同的A、B、C三个小球,表演节目前,先从袋中摸球一次(摸球后又放回袋中),如果摸到的是A球,则表演唱歌;如果摸到的是B球,则表演跳舞;如果摸到的是C球,则表演朗诵.若小明要表演两个节目,则他表演的节目不是同一类型的概率是多少?23.(10分)如图所示,阳光透过长方形玻璃投射到地面上,地面上出现一个明亮的平行四边形,杨阳用量角器量出了一条对角线与一边垂直,用直尺量出平行四边形的一组邻边的长分别是30cm,50cm,请你帮助杨阳计算出该平行四边形的面积.24.(10分)如图,是的直径,轴,交于点.(1)若点,求点的坐标;(2)若为线段的中点,求证:直线是的切线.25.(12分)如图,PA,PB是圆O的切线,A,B是切点,AC是圆O的直径,∠BAC=25°,求∠P的度数.26.十八大以来,某校已举办五届校园艺术节.为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.(1)五届艺术节共有________个班级表演这些节日,班数的中位数为________,在扇形统计图中,第四届班级数的扇形圆心角的度数为________;(2)补全折线统计图;(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演(“经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用,,,表示).利用树状图或表格求出该班选择和两项的概率.

参考答案一、选择题(每题4分,共48分)1、B【题目详解】试题分析:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=πrR,∵侧面积是底面积的2倍,∴2πr2=πrR,∴R=2r,设圆心角为n,有=2πr=πR,∴n=180°.故选B.考点:圆锥的计算2、B【分析】作OE⊥AD于E,连接OD,在Rt△ODE中,根据垂径定理和勾股定理即可求解.【题目详解】解:作OE⊥AD于E,连接OD,则OD=.在Rt△ODE中,易得∠EDO为45,△ODE为等腰直角三角形,ED=OE,OD===.可得:ED=1,AD=2ED=2,所以B选项是正确的.【题目点拨】此题主要考查了正多边形和圆,本题需仔细分析图形,利用垂径定理与勾股定理即可解决问题.3、D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【题目详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选:D.【题目点拨】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.4、D【分析】根据相似三角形的各个判定定理逐一分析即可.【题目详解】解:∵∠A=∠A若,不是对应角,不能判定,故A选项不符合题意;若,不是对应角,不能判定,故B选项不符合题意;若,但∠A不是两组对应边的夹角,不能判定,故C选项不符合题意;若,根据有两组对应边成比例且夹角对应相等的两个三角形相似可得,故D选项符合题意.故选D.【题目点拨】此题考查的是使两个三角形相似所添加的条件,掌握相似三角形的各个判定定理是解决此题的关键.5、D【分析】利用全等三角形的性质条件勾股定理求出的长,再利用相似三角形的性质求出△BMF的面积即可【题目详解】解:∵AG=AE,∠FAE=∠FAG=45°,AF=AF,∴△AFE△AFG,∴EF=FG∵DE=BG∴EF=FG=BG+FB=DE+BF故①正确∵BC=CD=AD=4,EC=1∴DE=3,设BF=x,则EF=x+3,CF=4-x,在Rt△ECF中,(x+3)2=(4-x)2+12解得x=∴BF=,AF=故②正确,③错误,∵BM∥AG∴△FBM~△FGA∴∴S△MEF=,故④正确,故选D.【题目点拨】本题考查旋转变换、正方形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题6、D【解题分析】去掉一个最高分和一个最低分对中位数没有影响,故选D.7、D【解题分析】由可得xy=6,故选D.8、C【解题分析】试题分析:观察图象可得,k>0,已知S△AOB=2,根据反比例函数k的几何意义可得k=4,故答案选C.考点:反比例函数k的几何意义.9、B【分析】首先根据矩形和翻折的性质得出△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,进而得出∠AED=∠A'ED=∠A'EB=60°,∠ADE=∠A'DE=∠A'DC=30°,判定△DB'A'≌△DCA',DC=DB',得出AE,设AB=DC=x,利用勾股定理构建方程,即可得解.【题目详解】∵四边形ABCD为矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE=,设AB=DC=x,则BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(负值舍去),x2=,故答案为B.【题目点拨】本题考查了矩形的性质,轴对称的性质等,解题关键是通过轴对称的性质证明∠AED=∠A'ED=∠A'EB=60°.10、D【分析】根据三角形面积公式、矩形性质及相似多边形的性质得出:①矩形对角线平分矩形,S△ABD=S△BCD,只有P点在BD上时,S₁+S₂=S₃+S4;②根据底边相等的两个三角形的面积公式求和可知,S₁+S₃=矩形ABCD面积,同理S₂+S4=矩形ABCD面积,所以S₁+S₃=S₂+S4;③根据底边相等高不相等的三角形面积比等于高的比来说明即可;④根据相似四边形判定和性质,对应角相等、对应边成比例的四边形相似,矩形AEPF∽矩形ABCD推出,点P在对角线上.【题目详解】解:①当点P在矩形的对角线BD上时,S₁+S₂=S₃+S4.但P是矩形ABCD内的任意一点,所以该等式不一定成立。故①不一定正确;②∵矩形∴AB=CD,AD=BC∵△APD以AD为底边,△PBC以BC为底边,这两三角形的底相等,高的和为AB,∴S₁+S₃=S矩形ABCD;同理可得S₂+S4=S矩形ABCD,∴②S₂+S4=S₁+S₃正确;③若S₃=2S₁,只能得出△APD与△PBC高度之比是,S₂、S4分别是以AB、CD为底的三角形的面积,底相等,高的比不一定等于,S4=2S2不一定正确;故此选项错误;④过点P分别作PF⊥AD于点F,PE⊥AB于点E,F.若S1=S2,.则AD·PF=AB·PE∴△APD与△PAB的高的比为:∵∠DAE=∠PEA=∠PFA=90°∴四边形AEPF是矩形,∴矩形AEPF∽矩形ABCD∴∴P点在矩形的对角线上,选项④正确.故选:D【题目点拨】本题考查了三角形面积公式的应用,相似多边形的判定和性质,用相似多边形性质对应边成比例是解决本题的难点.11、A【解题分析】根据二次根式有意义的条件:被开方数为非负数解答即可.【题目详解】∵是二次根式,∴x-3≥0,解得x≥3.故选A.【题目点拨】本题考查了二次根式有意义的条件.熟记二次根式的被开方数是非负数是解题关键.12、D【分析】直接利用概率公式进行求解,即可得到答案.【题目详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:=0.6,故选:D.【题目点拨】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.二、填空题(每题4分,共24分)13、4【分析】直接利用零指数幂的性质和绝对值的性质分别化简得出答案.【题目详解】解:原式=1+3=4.故答案为:4.【题目点拨】此题主要考查了零指数幂的性质和绝对值的性质,正确化简各数是解题关键.14、1【分析】过D点作DH⊥BC交BC延长线与H点,延长EF交DH与点M,连接BM.由菱形性质和可证明,进而可得,由BM最小值为BH即可求解.【题目详解】解:过D点作DH⊥BC交BC延长线与H点,延长EF交DH与点M,连接BM.∵在菱形中,,,∴,,∴,∵,,∴,∴,又∵,∴,∴,又∵,∴,∴当BM最小时FG最小,根据点到直线的距离垂线段最短可知,BM的最小值等于BH,∵在菱形中,,∴又∵在Rt△CHD中,,∴,∴,∴AM的最小值为6,∴的最小值是1.故答案为:1.【题目点拨】本题考查了动点线段的最小值问题,涉及了菱形的性质、等腰三角形性质和判定、垂线段最短、中位线定理等知识点;将“两动点”线段长通过中位线转化为“一定一动”线段长求解是解题关键.15、【分析】先由数据的平均数公式求得x,再根据方差的公式计算即可.【题目详解】∵数据1,2,x,4的平均数是2,∴,解得:,∴方差.故答案为:.【题目点拨】本题考查了平均数与方差的定义,平均数是所有数据的和除以数据的个数;方差是一组数据中各数据与它们的平均数的差的平方的平均数.16、.【分析】根据直角三角形的性质解答即可.【题目详解】∵旗杆高AB=8m,旗杆影子长BC=16m,∴tanC===,故答案为【题目点拨】此题考查解直角三角形的应用,关键是根据正切值是对边与邻边的比值解答.17、736【分析】由题意根据样本数据的比值和相对应得总体数据比值相同进行分析求解即可.【题目详解】解:设全校喜欢跳绳这项体育活动的学生有m人,由题意可得:,解得.所以全校喜欢跳绳这项体育活动的学生有736人.故答案为:736.【题目点拨】本题考查的是通过样本去估计总体对应的数据,熟练掌握通过样本去估计总体对应数据的方法是解题的关键.18、满足的第三象限点均可,如(-1,-2)【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|.【题目详解】解:∵图象上的点与坐标轴围成的矩形面积为2,

∴|k|=2,

∴反比例函数y=的图象在一、三象限,k>0,

∴k=2,

∴此反比例函数的解析式为.∴第三象限点均可,可取:当x=-1时,y=-2综上所述,答案为:满足的第三象限点均可,如(-1,-2)【题目点拨】本题考查的是反比例函数系数k的几何意义,即过反比例函数图象上任意一点向两坐标轴引垂线,所得矩形的面积为|k|.三、解答题(共78分)19、(1)y=﹣2x+1;(2)点P的坐标为(﹣,0)或(,0).【解题分析】(1)把A的坐标代入可求出m,即可求出反比例函数解析式,把B点的坐标代入反比例函数解析式,即可求出n,把A,B的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ABP=3,即可得出,解之即可得出结论.【题目详解】(1)∵双曲线y=(m≠0)经过点A(﹣,2),∴m=﹣1.∴双曲线的表达式为y=﹣.∵点B(n,﹣1)在双曲线y=﹣上,∴点B的坐标为(1,﹣1).∵直线y=kx+b经过点A(﹣,2),B(1,﹣1),∴,解得∴直线的表达式为y=﹣2x+1;(2)当y=﹣2x+1=0时,x=,∴点C(,0).设点P的坐标为(x,0),∵S△ABP=3,A(﹣,2),B(1,﹣1),∴×3|x﹣|=3,即|x﹣|=2,解得:x1=﹣,x2=.∴点P的坐标为(﹣,0)或(,0).【题目点拨】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S△ABP=3,得出.20、(1)如图所示,见解析;(2)①增大;②上,1;③;(3)1.【分析】(1)按要求把轴左边点和右边各点分别用一条光滑曲线顺次连接起来即可;(2)①观察图像可得出函数增减性;②由表格数据及图像可得出平移方式;③由图像可知对称中心;(3)将与联立求解,得到A、B两点坐标,将△AOB分为△AOC与△BOC计算面积即可.【题目详解】(1)如图所示:(2)①由图像可知:当时,随的增大而增大,故答案为增大;②由表格数据及图像可知,的图象是由的图象向上平移1个单位而得到的,故答案为上,1;③由图像可知图像关于点(0,1)中心对称.(3),解得:或∴A点坐标为(-1,3),B点坐标为(1,-1)设直线与y轴交于点C,当x=0时,y=1,所以C点坐标为(0,1),如图所示,S△AOB=S△AOC+S△BOC===所以△AOB的面积为1.【题目点拨】本题考查反比例函数的图像与性质,描点作函数图像,掌握反比例函数的图像与性质是关键.21、(1)①,②.(2)无变化;理由参见解析.(3),.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.【题目详解】(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴,BD=8÷2=4,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴(2)如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,,∵AC=4,CD=4,CD⊥AD,∴AD=∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴BD=AC=.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=,CD=4,CD⊥AD,∴AD=,∵点D、E分别是边BC、AC的中点,∴DE==2,∴AE=AD-DE=8-2=6,由(2),可得,∴BD=.综上所述,BD的长为或.22、见解析【分析】列举出所有情况,看他表演的节目不是同一类型的情况占总情况的多少即可.【题目详解】法一:列表如下:ABCAAAABACBBABBBCCCACBCC法二:画树状图如下:画树状图或列表由上述树状图或表格知:所有可能出现的结果共有9种其中不是同一类型有6种因此他表演的节目不是同一类型的概率是23、1200cm2【解题分析】先利用勾股定理计算AC,然后根据平行四边形的面积求解.【题目详解】解如图,AB=30cm,BC=50cm,AB⊥AC,在Rt△ABC中,AC==40cm,所以该平行四边形的面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论