人教版九年级数学上册 (概率)概率初步教学课件(第1课时)_第1页
人教版九年级数学上册 (概率)概率初步教学课件(第1课时)_第2页
人教版九年级数学上册 (概率)概率初步教学课件(第1课时)_第3页
人教版九年级数学上册 (概率)概率初步教学课件(第1课时)_第4页
人教版九年级数学上册 (概率)概率初步教学课件(第1课时)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二十五章概率初步概率第1课时

1.了解概率的意义,渗透随机观念.2.能计算一些简单随机事件的概率.学习目标

你如何用数学的眼光看待“杞人忧天”、“瓮中捉鳖”、“守株待兔”这几个成语呢?

杞人忧天:比喻不必要的或缺乏根据的忧虑和担心.从数学的角度看属于不可能事件.瓮中捉鳖:比喻想要捕捉的对象已在掌握之中.形容手到擒来,轻易而有把握.从数学的角度看属于必然事件.守株待兔:比喻不想努力,而希望通过侥幸获得成功.从数学的角度看属于随机事件.创设情境,引入新课

问题1从分别标有1,2,3,4,5的五根签中随机地抽取一根,抽到的签号是5.这个事件是随机事件吗?抽到5个号码中任意一个号码的可能性的大小一样吗?

这个事件是随机事件,抽到5个号码中任意一个号码的可能性的大小一样.问题2抽出的可能的结果一共有多少种?每一种占总数的几分之几?这五根签中有五种可能,即1,2,3,4,5.因为签看上去完全一样,又是随机抽取,所以每个数字被抽到的可能性大小相等.我们用表示每一个数字被抽到的可能性大小.合作探究,形成新知

问题3掷一枚质地均匀的骰子,向上的一面的点数有多少种可能?分别是什么?向上的点数是1、2、3、4、5、6的可能性的大小相等吗?它们都是总数的几分之几?掷一枚质地均匀的骰子,向上的一面的点数有6种可能,即1,2,3,4,5,6.因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等.我们用表示每种点数出现的可能性大小.

合作探究,形成新知

问题4掷一枚质地均匀的骰子,向上的一面的点数有几种可能?出现向上一面的点数是1的可能性是多少?其他点数呢?

由于骰子形状规则、质地均匀,又是随机掷出,所以出现每种结果的可能性大小相等,都是全部可能结果总数分之一.

概率的定义是什么?

概率:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率.表示方法:事件A的概率表示为P(A).合作探究,形成新知【数学探究】掷一枚质地均匀的骰子,随机出现点数,体现随机事件的基本属实.问题1至问题4有什么共同特点?共同特点:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.合作探究,形成新知你能类似求“点数是1”的概率的方法,由特殊上升到一般,总结出古典概型的概率的求法吗?

概率的求法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等.事件A包含其中的m种结果,那么事件A发生的概率为:

合作探究,形成新知P(A)=你知道m与n之间的大小关系吗?

在中,由m和n的含义,可知0≤m≤n,进而0≤

≤1.因此,0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0.

合作探究,形成新知P(A)=例

掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;

(2)点数为奇数;(3)点数大于2且小于5.解:掷一枚质地均匀的骰子时,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.(1)点数为2有1种可能,因此P(点数为2)=

.例题分析,深化提高(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=.(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=.例题分析,深化提高==1.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为(

).A.B.C.D.2.风华中学七(2)班的“精英小组”有男生4人,女生3人,若选出一人担任组长,组长是男生的概率为

.C练习巩固,综合应用3.开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为

,那么他遇到绿灯的概率为(

).4.从-1、0、

、π、

中随机抽取一数,抽到无理数的概率是

.D练习巩固,综合应用A.

B.C.D.

5.掷一个质地均匀的正方体骰子,观察向上一面的点数,(1)求掷得点数为2或4或6的概率;(2)小明在做掷骰子的试验时,前五次都没掷得点数2,求他第六次掷得点数2的概率.练习巩固,综合应用(2)小明前五次都没掷得点数2,可他第六次掷得点数仍然可能为1,2,3,4,5,6,共6种.他第六次掷得点数为2(记为事件B)有1种结果,因此P(B)=.解:掷一个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.(1)掷得点数为2或4或6(记为事件A)有3种结果,因此,

P(A)=.练习巩固,综合应用=1.概率的定义:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率.表示方法:事件A的概率表示为P(A).2.概率求法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等.事件A包含其中的m种结果,那么事件A发生的概率为.其中0≤P(A)≤1,当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0.课堂小结P(A)=第二十五章概率初步概率第2课时

学习目标1.理解概率的意义.2.掌握求概率的方法.学习目标例1一个可以自由转动的转盘,转盘分成7个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).求下列事件的概率:(1)指针指向红色;(2)指针指向红色或黄色;(3)指针不指向红色.例题分析,深化提高解:按颜色把7个扇形分别记为:红1,红2,红3,绿1,绿2,黄1,黄2,所有可能结果的总数为7,并且它们出现的可能性相等.

(1)指针指向红色(记为事件A)的结果有3种,即红1,红2,红3,因此P(A)=.(2)指针指向红色或黄色(记为事件B)的结果有5种,即红1,红2,红3,黄1,黄2.因此P(B)=.例题分析,深化提高(3)指针不指向红色(记为事件C)的结果有4种,即绿1,绿2,黄1,黄2,因此P(C)=.联系第(1)问和第(3)问,你有什么发现?结论:在一次试验中,相互对立的两个事件的概率之和等于1.例题分析,深化提高

例2如图是计算机中“扫雷”游戏的画面.在一个有9×9个方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现了如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B区域.数字3表示在A区域埋藏有3颗地雷.下一步应该点击A区域还是B区域?例题分析,深化提高

解:A区域的方格共有8个,标号3表示在这8个方格中有3个方格各埋藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率是.

B区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B区域的任一方格,遇到地雷的概率是.由于>,即点击A区域遇到地雷的可能性大于点击B区域遇到地雷的可能性,因此第二步该点击B区域.例题分析,深化提高

1.袋子中装有24个黑球、2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由.练习巩固,综合应用解:摸到黑球的概率大.摸到黑球的可能性为,摸到白球的可能性为,因为>,故摸到黑球的概率大.2.一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球个数比白球个数的2倍少5个.已知从袋中摸出一个球是红球的概率是.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从袋子剩余的球中摸出一个球是红球的概率.练习巩固,综合应用解:(1)100×=30,∴袋中红球有30个.(2)设白球有x个,则黄球有(2x-5)个.根据题意,得x+(2x-5)+30=100,解得x=25.∴摸出一个球是白球的概率P=(3)从袋子剩余的球中摸出一个球是红球的概率P=练习巩固,综合应用==3.回顾例3,如果小王在游戏开始时点击的第一个方格出现标号1,那么下一步点击哪个区域比较安全?

答:一样,因为A、B两区域中遇到地雷的概率都是

.练习巩固,综合应用

1.概率的定义:一般地,对于一个随机事件A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论