版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省南阳市示范性普通中学2022-2023学年高三数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.命题“”是命题“”的(
)
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不是充分又不是必要条件参考答案:B略2.已知双曲线的左、右焦点分别是,正三角形的一边与双曲线左支交于点,且,则双曲线的离心率的值是(
)A.
B.
C.
D.参考答案:B试题分析:由已知可知:点在轴上,设,∵,∴,即,在中,,由余弦定理有,由定义有:,即,∴.考点:1.双曲线的标准方程;2.余弦定理.
3.设集合={0,1,2,3,4,5},={3,4,5,6},则满足且的集合的个数是
A.64
B.56
C.49
D.8参考答案:B略4.从1、2、3、4、5、6中任三个数,则所取的三个数按一定的顺序可排成等差数列的概率为()A. B. C. D.参考答案:A【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n==20,再利用列举法求出所取的三个数按一定的顺序可排成等差数列包含的基本事件个数,由此能求出所取的三个数按一定的顺序可排成等差数列的概率.【解答】解:从1、2、3、4、5、6中任取三个数,基本事件总数n==20,所取的三个数按一定的顺序可排成等差数列包含的基本事件有:(1,2,3),(2,3,4),(3,4,5),(4,5,6),(1,3,5),(2,4,6),共有6个,则所取的三个数按一定的顺序可排成等差数列的概率为p=.故选:A.5.复数在复平面上位于(
)
A.第一象限
B.第二象限
C.第三象限
D.第四象限参考答案:A6.已知集合A={x|x2﹣4x﹣5<0},B={x|2<x<4},则A∩B=()A.(1,3) B.(1,4) C.(2,3) D.(2,4)参考答案:D【考点】交集及其运算.【分析】求出A中不等式的解集确定出A,找出A与B的交集即可.【解答】解:由A中不等式变形得:(x﹣5)(x+1)<0,解得:﹣1<x<5,即A=(﹣1,5),∵B=(2,4),∴A∩B=(2,4),故选:D.7.已知双曲线C:﹣=1(a>0,b>0)的右焦点与抛物线y2=20x的焦点重合,且其渐近线方程为y=±x,则双曲线C的方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1参考答案:A【考点】KC:双曲线的简单性质.【分析】求出抛物线的焦点坐标,根据双曲线的焦点坐标和抛物线的焦点关系,得到c=5,根据双曲线的渐近线方程得到=,联立方程组求出a,b即可.【解答】解:抛物线的焦点坐标为(5,0),双曲线焦点在x轴上,且c=5,∵又渐近线方程为y=±x,可得=,即b=a,则b2=a2=c2﹣a2=25﹣a2,则a2=9,b2=16,则双曲线C的方程为﹣=1,故选A8.执行如图所示的程序框图,则输出的B的值为()A.63
B.31
C.15
D.7参考答案:A略9.在中,是的内心,若,其中,则动点的轨迹所覆盖图形的面积为
(
)A.
B.
C.
D.
参考答案:B略10.集合A={x||x|≥2},B={x|x2﹣2x﹣3>0},则(?RA)∩B=()A.(﹣2,﹣1) B.[2,3) C.(3,+∞) D.(﹣∞,﹣2]∪(3,+∞)参考答案:A【考点】交、并、补集的混合运算.【分析】由已知可得?RA={x|﹣2<x<2},解不等式求出?RA,和集合B,结合集合交集运算的定义,可得答案.【解答】解:∵A={x||x|≥2}={x|x≥2或x≤﹣2},∴?RA={x|﹣2<x<2},B={x|x2﹣2x﹣3>0}={x|x>3或x<﹣1},则(?RA)∩B=(﹣2,﹣1),故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.设{an}是等比数列,公比q=,Sn为{an}的前n项和.记Tn=,n∈N*,设Bn为数列{Tn}的最大项,则n=.参考答案:4【考点】等比数列的前n项和.【分析】首先用公比q和a1分别表示出Sn和S2n,代入Tn易得到Tn的表达式,再根据基本不等式得出n.【解答】解:依题意得:Tn===?=?[()n+﹣17],因为[()n+≥8,当且仅当()n=4,即n=4时取等号,所以当n=4时Tn有最大值.故答案是:4.12.过圆内一点作两条相互垂直的弦AB和CD,且AB=CD,则四边形ACBD的面积为
.参考答案:19根据题意画出上图,连接,过作,,为的中点,为的中点,又,,∴四边形为正方形,
由圆的方程得到圆心,半径,【点睛】本题的关键点有以下:1.利用数形结合法作辅助线构造正方形;2.利用勾股定理求解.
13.若函数f(x)=(x﹣a)(x+3)为偶函数,则f(2)=.参考答案:﹣5【考点】函数奇偶性的性质.【分析】根据偶函数f(x)的定义域为R,则?x∈R,都有f(﹣x)=f(x),建立等式,解之求出a,即可求出f(2).【解答】解:因为函数f(x)=(x﹣a)(x+3)是偶函数,所以?x∈R,都有f(﹣x)=f(x),所以?x∈R,都有(﹣x﹣a)?(﹣x+3)=(x﹣a)(x+3),即x2+(a﹣3)x﹣3a=x2﹣(a﹣3)x﹣3a,所以a=3,所以f(2)=(2﹣3)(2+3)=﹣5.故答案为:﹣5.14.已知
参考答案:115.在正三角形ABC中,D是BC上的点,AB=3,BD=1,则=___参考答案:.16.参考答案:m<0或m≥5略17.设函数f(x)=,则f(f(3))=______参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系xOy中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线l的极坐标方程为,A,B两点的极坐标分别为.(1)求圆C的普通方程和直线l的直角坐标方程;(2)点P是圆C上任一点,求△PAB面积的最小值.参考答案:(1)由消去参数t,得,所以圆C的普通方程为.……2分由,得,换成直角坐标系为,所以直线l的直角坐标方程为……………5分(2)化为直角坐标为在直线l上,并且,设P点的坐标为,则P点到直线l的距离为,…8分,所经面积的最小值是…10分19.(本小题满分12分)已知等差数列{an}满足a2=0,a6+a8=-10(I)求数列{an}的通项公式;(II)求数列{an·3n-1}的前n项和.参考答案:(I)设等差数列{an}的公差为d,由已知条件可得解得故数列{an}的通项公式为an=2-n
………………5分
(II)设数列{an·3n-1}的前n项和为Sn,即
Sn=1·30+0·31-1·32-···+(3-n)3n-1+(2-n)3n3Sn=
1·31+0·32-1·33-···+(3-n)3n+(2-n)3n+1所以2Sn=30+31+32-···+3n-1+(2-n)3n所以Sn=综上,数列{an·3n-1}………………12分20.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=.(1)写出直线l的极坐标方程与曲线C的普通方程;(2)若点P是曲线C上的动点,求P到直线l的距离的最小值,并求出P点的坐标.参考答案:考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:本题(1)可以先消参数,求出直线l的普通方程,再利用公式将曲线C的极坐标方程化成平面直角坐标方程,(2)利用点到直线的距离公式,求出P到直线l的距离的最小值,再根据函数取最值的情况求出P点的坐标,得到本题结论.解答: 解:(1)∵,∴x﹣y=1.∴直线的极坐标方程为:ρcosθ﹣ρsinθ=1.即,即.∵,∴,∴ρcos2θ=sinθ,∴(ρcosθ)2=ρsinθ即曲线C的普通方程为y=x2.(2)设P(x0,y0),,∴P到直线的距离:.∴当时,,∴此时,∴当P点为时,P到直线的距离最小,最小值为.点评:本题考查了参数方程化为普通方程、极坐标方程化为平面直角坐标方程、点到直线的距离公式,本题难度不大,属于基础题.21.已知△ABC的内角A,B,C的对边分别为a,b,c,sin2B=2sinAsinC.(1)若△ABC为等腰三角形,求顶角C的余弦值;(2)若△ABC是以B为直角顶点的三角形,且,求△ABC的面积.参考答案:【考点】余弦定理.【分析】(1)由正弦定理化简已知的条件列出方程,由条件求出三边的关系,由余弦定理求出cosC的值;(2)由(1)和勾股定理可得a=c,由条件求出a、c的值,代入三角形的面积公式求出答案.【解答】解:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托招聘服务合同
- 《商品促销》课件
- 二零二四年文化传媒内容创作外包合同2篇
- 基于物联网的2024年度智能家居安装合同
- 病例报告范文
- 婚外情感情纠纷赔偿协议书
- 《成本的识别与计量》课件
- 《降低输液外渗率》课件
- 明暗与立体美术课件
- 签了个医患协议书属于免责的事么
- 生理学:第二章 细胞的电活动
- TOPSIS评价方法PPT课件
- 【房地产营销策略】尾盘清货攻略
- 消毒供应室打包方法ppt课件
- 可持续发展教育概念的演变
- 力学_舒幼生_第八章狭义相对论
- 电梯维保监督管理标准(万达)
- 产品包装用塑料编织袋质量要求及检验验收规定
- CSY-9XX型传感器系统实验仪实验指南
- 小学英语教师个人专业发展总结4篇范文
- TRIZ-2003矛盾矩阵表(重新整理)
评论
0/150
提交评论