版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省荆门市屈家岭管理区第一初级中学数学九年级第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是A.正三角形 B.正方形 C.正五边形 D.正六边形2.在反比例函数图像的每一条曲线上,y都随x的增大而增大,则b的取值范围是()A.b=3 B. C. D.3.如图,比例规是一种画图工具,它由长度相等的两脚AC和BD交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC,OB=3OD),然后张开两脚,使A,B两个尖端分别在线段a的两个端点上,当CD=1.8cm时,则AB的长为()A.7.2cm B.5.4cm C.3.6cm D.0.6cm4.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=10355.如图,在平面直角坐标系中,点P在函数y=(x>0)的图象上从左向右运动,PA∥y轴,交函数y=﹣(x>0)的图象于点A,AB∥x轴交PO的延长线于点B,则△PAB的面积()A.逐渐变大 B.逐渐变小 C.等于定值16 D.等于定值246.若反比例函数的图像在第二、四象限,则它的解析式可能是()A. B. C. D.7.如图所示,该几何体的俯视图是()A. B. C. D.8.如图,CD是⊙O的直径,已知∠1=30°,则∠2等于()A.30° B.45° C.60° D.70°9.《代数学》中记载,形如的方程,求正数解的几何方法是:“如图1,先构造一个面积为的正方形,再以正方形的边长为一边向外构造四个面积为的矩形,得到大正方形的面积为,则该方程的正数解为.”小聪按此方法解关于的方程时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为()A.6 B. C. D.10.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30° B.45° C.60° D.40°二、填空题(每小题3分,共24分)11.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.12.设m、n是一元二次方程x2+3x-7=0的两个根,则m2+4m+n=_____.13.已知一个不透明的盒子中装有3个红球,2个白球,这些球除颜色外均相同,现从盒中任意摸出1个球,则摸到红球的概率是________
.14.如果二次根式有意义,那么的取值范围是_________.15.在中,,则的面积是__________.16.设x1、x2是方程x﹣x﹣1=0的两个实数根,则x1+x2=_________.17.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程____________18.若一个扇形的圆心角是120°,且它的半径是18cm,则此扇形的弧长是_______cm三、解答题(共66分)19.(10分)已知抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),与y轴交于点C.(1)求抛物线的解析式;(2)点D为第四象限抛物线上一点,设点D的横坐标为m,四边形ABCD的面积为S,求S与m的函数关系式,并求S的最值;(3)点P在抛物线的对称轴上,且∠BPC=45°,请直接写出点P的坐标.20.(6分)如图,在等腰中,,以为直径作交于点,过点作,垂足为.(1)求证:是的切线.(2)若,,求的长.21.(6分)知识改变世界,科技改变生活。导航设备的不断更新方便了人们的出行。如图,某校组织学生乘车到蒲江茶叶基地C地进行研学活动,车到达A地后,发现C地恰好在A地的正东方向,且距A地9.1千米,导航显示车辆应沿南偏东60°方向行驶至B地,再沿北偏东53°方向行驶一段距离才能到达C地,求B、C两地的距离(精确到个位)(参考数据)22.(8分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB绕原点顺时针旋转后得到的△,并写出点的坐标;(2)在(1)的条件下,求线段在旋转过程中扫过的扇形的面积.23.(8分)为了维护国家主权,海军舰队对我国领海例行巡逻.如图,正在执行巡航任务的舰队以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔在北偏东30°方向上.(1)求∠APB的度数.(2)已知在灯塔P的周围40海里范围内有暗礁,问舰队继续向正东方向航行是否安全?24.(8分)如图,在矩形ABCD中,AB=6,AD=3,点E是边CD的中点,点P,Q分别是射线DC与射线EB上的动点,连结PQ,AP,BP,设DP=t,EQ=2t.(1)当点P在线段DE上(不包括端点)时.①求证:AP=PQ;②当AP平分∠DPB时,求△PBQ的面积.(2)在点P,Q的运动过程中,是否存在这样的t,使得△PBQ为等腰三角形?若存在,请求出t的值;若不存在,试说明理由.25.(10分)国庆期间某旅游点一家商铺销售一批成本为每件50元的商品,规定销售单价不低于成本价,又不高于每件70元,销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).(1)请直接写出y关于x之间的关系式;(2)设该商铺销售这批商品获得的总利润(总利润=总销售额一总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大?最大值是多少?(3)若该商铺要保证销售这批商品的利润不能低于400元,求销售单价x(元)的取值范围是.(可借助二次函数的图象直接写出答案)26.(10分)如图,在正方形中,为边的中点,点在边上,且,延长交的延长线于点.(1)求证:△∽△.(2)若,求的长.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【题目详解】由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选D.【题目点拨】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.2、C【分析】由反比例函数的图象的每一条曲线上,y都随x的增大而增大,可得3-b<0,进而求出答案,作出选择.【题目详解】解:∵反比例函数的图象的每一条曲线上,y都随x的增大而增大,∴3-b<0,∴b>3,故选C.【题目点拨】考查反比例函数的性质和一元一次不等式的解法,掌握反比例函数的性质是解决问题的关键.3、B【解题分析】由已知可证△ABO∽CDO,故,即.【题目详解】由已知可得,△ABO∽CDO,所以,,所以,,所以,AB=5.4故选B【题目点拨】本题考核知识点:相似三角形.解题关键点:熟记相似三角形的判定和性质.4、B【解题分析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1.故选B考点:由实际问题抽象出一元二次方程.5、C【分析】根据反比例函数k的几何意义得出S△POC=×2=1,S矩形ACOD=6,即可得出,从而得出,通过证得△POC∽△PBA,得出,即可得出S△PAB=1S△POC=1.【题目详解】如图,由题意可知S△POC=×2=1,S矩形ACOD=6,∵S△POC=OC•PC,S矩形ACOD=OC•AC,∴,∴,∴,∵AB∥轴,∴△POC∽△PBA,∴,∴S△PAB=1S△POC=1,∴△PAB的面积等于定值1.故选:C.【题目点拨】本题考查了反比例函数的性质以及矩形的面积的计算,利用相似三角形面积比等于相似比的平方是解决本题的关键.6、A【分析】根据反比例函数的定义及图象经过第二、四象限时,判断即可.【题目详解】解:、对于函数,是反比例函数,其,图象位于第二、四象限;、对于函数,是正比例函数,不是反比例函数;、对于函数,是反比例函数,图象位于一、三象限;、对于函数,是二次函数,不是反比例函数;故选:A.【题目点拨】本题考查了反比例函数、反比例的图象和性质,可以采用排除法,直接法得出答案.7、C【解题分析】从上往下看,总体上是一个矩形,中间隔着一个竖直的同宽的小矩形,而挖空后长方体内的剩余部分用虚线表示为左右对称的两条靠近宽的线,选项C中图象便是俯视图.故选:C.8、C【解题分析】试题分析:如图,连接AD.∵CD是⊙O的直径,∴∠CAD=90°(直径所对的圆周角是90°);在Rt△ABC中,∠CAD=90°,∠1=30°,∴∠DAB=60°;又∵∠DAB=∠2(同弧所对的圆周角相等),∴∠2=60°考点:圆周角定理9、B【分析】根据已知的数学模型,同理可得空白小正方形的边长为,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,可得大正方形的边长,从而得结论.【题目详解】x2+6x+m=0,x2+6x=-m,∵阴影部分的面积为36,∴x2+6x=36,4x=6,x=,同理:先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为36+()2×4=36+9=45,则该方程的正数解为.故选:B.【题目点拨】此题考查了解一元二次方程的几何解法,用到的知识点是长方形、正方形的面积公式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.10、A【解题分析】根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=∠AOB=30°.【题目详解】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=∠AOB=30°.故选A.【题目点拨】此题考查了切线的性质:圆的切线垂直于经过切点的半径;以及圆周角定理:等弧所对的圆周角等于所对圆心角的一半.二、填空题(每小题3分,共24分)11、.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【题目详解】共个数,大于的数有个,(大于);故答案为.【题目点拨】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.12、1.【分析】求代数式的值,一元二次方程的解,一元二次方程根与系数的关系.【题目详解】解:∵m、n是一元二次方程x2+2x-7=0的两个根,∴m2+2m-7=0,即m2+2m=7;m+n=-2.∴m2+1m+n=(m2+2m)+(m+n)=7-2=1.故答案为:113、【分析】先求出这个口袋里一共有球的个数,然后用红球的个数除以球的总个数即可.【题目详解】因为共有5个球,其中红球由3个,所以从中任意摸出一个球是红球的概率是,故答案为.【题目点拨】本题考查了概率公式,掌握概率=所求情况数与总情况数之比是解题的关键.14、x≤1【分析】直接利用二次根式有意义的条件分析得出答案.【题目详解】解:二次根式有意义,则1-x≥0,
解得:x≤1.
故答案为:x≤1.【题目点拨】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.15、24【分析】如图,由三角函数的定义可得,可得AB=,利用勾股定理可求出AC的长,根据三角形面积公式求出△ABC的面积即可.【题目详解】∵,∴AB=,∴()2=AC2+BC2,∵BC=8,∴25AC2=9AC2+9×64,解得:AC=6(负值舍去),∴△ABC的面积是×8×6=24,故答案为:24【题目点拨】本题考查三角函数的定义,在直角三角形中,锐角的正弦是角的对边与斜边的比值;余弦是角的邻边与斜边的比值;正切是角的对边与邻边的比值;熟练掌握三角函数的定义是解题关键.16、1【分析】观察方程可知,方程有两个不相等的实数根,由根与系数关系直接求解.【题目详解】解:方程中,△==5>0,方程有两个不相等的实数根,==1.故答案为:1.【题目点拨】本题考查了一元二次方程的根与系数关系.关键是先判断方程的根的情况,利用根与系数关系求解.17、(30-2x)(20-x)=6×1.【解题分析】解:设道路的宽为xm,将6块草地平移为一个长方形,长为(30-2x)m,宽为(20-x)m.可列方程(30-2x)(20-x)=6×1.18、12π【分析】根据弧长公式代入可得结论.【题目详解】解:根据题意,扇形的弧长为,故答案为:12π.【题目点拨】本题主要考查弧长的计算,解决本题的关键是要熟练掌握弧长公式.三、解答题(共66分)19、(1)y=x2﹣x﹣4;(2)S=﹣(m﹣2)2+16,S的最大值为16;(3)点P的坐标为:(1,﹣1+)或(1,﹣1﹣).【分析】(1)根据交点式可求出抛物线的解析式;
(2)由S=S△OBC+S△OCD+S△ODA,即可求解;
(3)∠BPC=45°,则BC对应的圆心角为90°,可作△BCP的外接圆R,则∠BRC=90°,过点R作y轴的平行线交过点C与x轴的平行线于点N、交x轴于点M,证明△BMR≌△RNC(AAS)可求出点R(1,-1),即点R在函数对称轴上,即可求解.【题目详解】解:(1)∵抛物线y=x2+bx+c与x轴交于A(4,0)、B(﹣2,0),∴抛物线的表达式为:y=(x﹣4)(x+2)=x2﹣x﹣4;(2)设点D(m,m2﹣m﹣4),可求点C坐标为(0,-4),∴S=S△OBC+S△OCD+S△ODA==﹣(m﹣2)2+16,当m=2时,S有最大值为16;(3)∠BPC=45°,则BC对应的圆心角为90°,如图作圆R,则∠BRC=90°,圆R交函数对称轴为点P,过点R作y轴的平行线交过点C与x轴的平行线于点N、交x轴于点M,设点R(m,n).∵∠BMR+∠MRB=90°,∠MRB+∠CRN=90°,∴∠CRN=∠MBR,∠BMR=∠RNC=90°,BR=RC,∴△BMR≌△RNC(AAS),∴CN=RM,RN=BM,即m+2=n+4,﹣n=m,解得:m=1,n=﹣1,即点R(1,﹣1),即点R在函数对称轴上,圆的半径为:=,则点P的坐标为:(1,﹣1+)或(1,﹣1﹣).【题目点拨】本题考查的是二次函数与几何综合运用,涉及圆周角定理、二次函数解析式的求法、图形的面积计算等,其中(3),要注意分类求解,避免遗漏,能灵活运用数形结合的思想是解题的关键,(3)的难点是作出辅助圆.20、(1)见解析;(2)【解题分析】(1)连结,根据等腰三角形性质和等量代换得,由垂直定义和三角形内角和定理得,等量代换得,由平角定义得,从而可得证.(2)连结,由圆周角定理得,根据等腰三角形性质和三角形外角性质可得,在中,由直角三角形性质得,在中,由直角三角形性质得,再由弧长公式计算即可求得答案.【题目详解】(1)证明:如图,连结.∵,,∴,,∴,∴,∴,∴,∴,∴为的切线.(2)解:连结,∵为的直径.∴.∵,∴,,∴.∵,∴,∴,∴【题目点拨】本题考查切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.21、5千米【分析】作BD⊥AC,设AD=x,在Rt△ABD中求得BD,在Rt△BCD中求得CD,由AC=AD+CD建立关于x的方程,解之求得x的值,根据三角函数的定义即可得到结论.【题目详解】解:如图,作BD⊥AC于点D,则∠DAB=30°、∠DBC=53°,
设BD=x,
在Rt△ABD中,AD==
在Rt△BCD中,CD=BDtan∠DBC=x·tan53°=x由AC=AD+CD可得+x=9.1解得:x=则在Rt△BCD中,BC==即BC两地的距离约为5千米.【题目点拨】此题考查了方向角问题.解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.22、(1)图见解析,点A1坐标是(1,-4);(2)【分析】(1)据网格结构找出点A、B绕点O按照顺时针旋转90°后的对应点A1、B1的位置,然后顺次O、A1、B1连接即可,再根据平面直角坐标系写出A1点的坐标;(2)利用扇形的面积公式求解即可,利用网格结构可得出.【题目详解】(1)点A1坐标是(1,-4)(2)根据题意可得出:∴线段在旋转过程中扫过的扇形的面积为:.【题目点拨】本题考查的知识点是旋转变换以及扇形的面积公式,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23、(1);(2)安全.【分析】(1)如图(见解析),先根据方位角的定义可得,再根据平行线的判定与性质可得,然后根据角的和差即可得;(2)设海里,分别在和中,解直角三角形建立等式,求出x的值,由此即可得出答案.【题目详解】(1)如图,过点P作于点C,由题意得:海里,,,;(2)由垂线段最短可知,若海里,则舰队继续向正东方向航行是安全的,设海里,在中,,即,解得,在中,,即,解得,,,解得,即海里,,舰队继续向正东方向航行是安全的.【题目点拨】本题考查了方位角、平行线的判定与性质、解直角三角形等知识点,较难的是题(2),将问题正确转化为求PC的长是解题关键.24、(1)①见解析;②S△PBQ=18﹣93;(2)存在,满足条件的t的值为6﹣13或13或6+13.【解题分析】(1)①如图1中,过点Q作QF⊥CD于点F,证明Rt△ADP≌Rt△PFQ即可.②如图,过点A作PB的垂线,垂足为H,过点Q作PB的垂线,垂足为G.由Rt△ADP≌Rt△AHP,推出PH=PD=t,AH=AD=1.由Rt△AHP△Rt△PGQ,推出QG=PH=DP=t,在Rt△AHB中,则有12+(6﹣t)2=62,求出t即可解决问题.(2)分三种情形:①如图1﹣1中,若点P在线段DE上,当PQ=QB时.②如图1﹣2中,若点P在线段EC上(如图),当PB=BQ时.③如图1﹣1中,若点P在线段DC延长线上,QP=QB时,分别求解即可.【题目详解】(1)①证明:如图1中,过点Q作QF⊥CD于点F,∵点E是DC的中点,∴CE=DE=1=CB,又∵∠C=90°,∴∠CEB=∠CBE=45°,∵EQ=2t,DP=t,∴EF=FQ=t.∴FQ=DP,∴PF=PE+EF=PE+DP=DE=1∴PF=AD,∴Rt△ADP≌Rt△PFQ,∴AP=PQ.②如图,过点A作PB的垂线,垂足为H,过点Q作PB的垂线,垂足为G.由AP平分∠DPB,得∠APD=∠APB,易证Rt△ADP≌Rt△AHP,∴PH=PD=t,AH=AD=1.又∠APD=∠PAB,∴∠PAB=∠APB,∴PB=AB=8,易证Rt△AHP△Rt△PGQ,∴QG=PH=DP=t,在Rt△AHB中,则有12+(6﹣t)2=62,解得t=6﹣12,∴S△PBQ=12•PB•QG=12×6×(6﹣12)=18﹣9(1)①如图1﹣1中,若点P在线段DE上,当PQ=QB时,∴AP=PQ=QB=BE﹣EQ=12﹣2t,在Rt△APD中,由DP2+AD2=AP2,得t2+9=2(1﹣t)2,解得t=6﹣12或6+12(舍去)②如图1﹣2中,若点P在线段EC上(如图),当PB=BQ时,∴PB=BQ=2t﹣12,则在Rt△BCP中,由BP2=CP2+BC2,得2(t﹣1)2=(6﹣t)2+9,解得:t=12或-33③如图1﹣1中,若点P在线段DC延长线上,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年办公复印机买卖协议详细范本
- 2024年白字黑字无中介借款协议样例
- GF2024年工程设计服务协议
- 2024年初级水产批发销售协议样本
- 2024员工加入协议详细规定
- 2024年架子工承包协议
- 二手摩托车交易协议范本2024
- DB11∕T 1668-2019 轻钢现浇轻质内隔墙技术规程
- 2024年医疗器械试验协议模板
- 2024年企业股权奖励实施细则协议
- 视频制作保密协议版
- 幼儿园中班语言《有趣的象形字》课件
- 莎士比亚戏剧赏析智慧树知到期末考试答案章节答案2024年北京师范大学
- 严重精神障碍患者年度健康体检告知书
- 国培计划培训成果汇报
- 医疗废物泄露的应急预案及处置流程
- 《研学旅行课程设计》课件-制订研学课程目标
- 基于幼小衔接的幼儿学习品质培养研究以小学为例
- 2023版(五级)脊柱按摩师技能认定考试题库(单选题部分)
- (正式版)SHT 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范
- 工程地质剖面图的绘制(正式)
评论
0/150
提交评论