版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省大连市第八十七中学高一数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.把
化为八进制数,结果是
(
)A.
B.
C.
D.参考答案:A2.在公比q为整数的等比数列{an}中,Sn是数列{an}的前n项和,若,,则下列说法错误的是(
)A. B.数列是等比数列C. D.数列是公差为2的等差数列参考答案:D【分析】根据题中条件,逐项判断,即可得出结果.【详解】因为,,所以,所以,(舍),A正确;所以,,,,C正确;又,所以是等比数列,B正确;又,所以数列是公差为的等差数列.D错误;故选D【点睛】本题主要考查数列的综合应用,熟记等差数列与等比数列的通项公式与求和公式即可,属于常考题型.3.若函数f(x)=kx-lnx在区间(1,+∞)上单调递增,则k的取值范围是()A.(-∞,-2] B.(-∞,-1]C.D参考答案:由条件知f′(x)=k-≥0在(1,+∞)上恒成立,∴k≥1.把函数的单调性转化为恒成立问题是解决问题的关键.4.(5分)如果函数y=x2+(1﹣a)x+2在区间(﹣∞,4]上是减函数,那么实数a的取值范围是() A. a≥9 B. a≤﹣3 C. a≥5 D. a≤﹣7参考答案:考点: 二次函数的性质.专题: 计算题.分析: 求出函数y=x2+(1﹣a)x+2的对称轴x=,令≥4,即可解出a的取值范围.解答: 函数y=x2+(1﹣a)x+2的对称轴x=又函数在区间(﹣∞,4]上是减函数,可得≥4,,得a≥9.故选A.点评: 考查二次函数图象的性质,二次项系数为正时,对称轴左边为减函数,右边为增函数,本题主要是训练二次函数的性质.5.在三棱柱中,已知,,此三棱柱各个顶点都在一个球面上,则球的体积为(
)A. B.
C.
D.参考答案:A6.参考答案:D略7.(5分)若角A为三角形ABC的一个内角,且sinA+cosA=,则这个三角形的形状为() A. 锐角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等腰三角形参考答案:B考点: 三角形的形状判断;二倍角的正弦.专题: 解三角形.分析: 直接利用两角和的正弦函数,化简等式的左侧,利用角的范围判断即可.解答: 角A为三角形ABC的一个内角,sinA+cosA=sin(A+),如果A∈(0,],A+∈,sin(A+)∈.A∈(,π),A+∈,sin(A+)∈(﹣1,1).∵sinA+cosA=,∴A是钝角.三角形是钝角三角形.故选:B.点评: 本题考查三角形的形状的判断,两角和的正弦函数的应用,考查计算能力.8.设集合,,则 A.
B.
C.
D.参考答案:C9.(5分)如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是() A. AC⊥SB B. AB∥平面SCD C. AC⊥面SBD D. AB与SC所成的角等于DC与SA所成的角参考答案:D考点: 直线与平面垂直的性质;棱锥的结构特征.专题: 空间位置关系与距离.分析: A.利用正方形的性质和线面垂直的性质与判定即可得出;B.利用正方形的性质和线面平行的判定定理即可得出;C.通过平移即可得出异面直线所成的角;D.利用线面垂直的判定与性质、线面角的定义、等腰三角形的性质即可得出.解答: A.∵SD⊥平面ABCD,∴SD⊥AC.∵四边形ABCD是正方形,∴AC⊥BD.又∵SD∩DB=D.∴AC⊥平面SDB,∴AC⊥SB.B.∵四边形ABCD是正方形,∴AB∥DC,又AB?平面SCD,CD?平面SCD,∴AB∥平面SCD.C.由A可知:AC⊥平面SDB.D.∵AB∥DC,∴∠SCD(为锐角)是AB与SC所成的角,∠SAB(为直角)是DC与SA所成的角;而∠SCD≠∠SAB.∴AB与SC所成的角等于DC与SA所成的角不正确;故选:D.点评: 本题综合考查了空间位置关系和空间角、正方形的性质,考查了直线与平面垂直的性质,属于中档题.10.已知||=2,
||=1,,则向量在方向上的投影是[
]A.
B.
C.
D.1参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.指数函数在定义域内是减函数,则的取值范围是
参考答案:12.给出以下命题:①存在两个不等实数,使得等式成立;②若数列是等差数列,且,则;③若是等比数列的前n项和,则成等比数列;④若是等比数列的前n项和,且,则为零;⑤已知的三个内角所对的边分别为,若,则一定是锐角三角形。其中正确的命题的个数是(
)A.1个
B.2个
C.3个
D.4个参考答案:B13.已知线段AB上有9个确定的点(包括端点A与B).现对这些点进行往返标数(从…进行标数,遇到同方向点不够数时就“调头”往回数).如图:在点A上标1,称为点1,然后从点1开始数到第二个数,标上2,称为点2,再从点2开始数到第三个数,标上3,称为点3(标上数n的点称为点n),……,这样一直继续下去,直到1,2,3,…,2019都被标记到点上,则点2019上的所有标记的数中,最小的是_______.参考答案:3【分析】将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,则,令,即可得。【详解】依照题意知,标有2的是1+2,标有3的是1+2+3,……,标有2019的是1+2+3+……+2019,将将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,,令,,解得,故点2019上的所有标记的数中,最小的是3.【点睛】本题主要考查利用合情推理,分析解决问题的能力。意在考查学生的逻辑推理能力,14.如图,正六边形ABCDEF中,有下列四个命题:①+=2;②=2+2;③?=;④(?)=(?).其中真命题的代号是(写出所有真命题的代号).参考答案:①②④.【考点】9R:平面向量数量积的运算.【分析】利用向量的运算法则及正六边形的边、对角线的关系判断出各个命题的正误.【解答】解:①+==2,故①正确;②取AD的中点O,有=2=2(+)=2+2,故②正确;③∵?﹣?=(+)?﹣?=?≠0,故③错误;④∵=2,∴(?)?=2(?)?=2?(?),故④正确;故答案为:①②④.15.在,角A、B、C所对的边分别为,若,则=参考答案:16.已知△ABC的三个内角A、B、C成等差数列,且边a=4,c=3,则△ABC的面积等于.参考答案:【考点】正弦定理;等差数列的性质.【分析】先由△ABC的三个内角A、B、C成等差数列,得B=60°,再利用面积公式可求.【解答】解:由题意,∵△ABC的三个内角A、B、C成等差数列∴B=60°∴S=ac×sinB=故答案为17.已知若,则的最小值为
参考答案:9三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数(其中)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为(1)求的解析式;(2)当时,求的值域.参考答案:(1);(2)19.函数对一切实数x、y均有成立,且.(Ⅰ)求函数的解析式.(Ⅱ)解不等式.(Ⅲ)对任意的,,都有,求实数的取值范围.参考答案:见解析.(Ⅰ)由已知等式,令,,得,∵,∴,令得,∴,即.(Ⅱ)∵的解集为,∴,∵,∴,∴,∴,即原不等式的解集为.(Ⅲ)∵,∴在单调递增,∴,要使任意,都有,则当时,,显然不成立,当时,,∴,解得,∴的取值范围是.20.(本题9分)函数(Ⅰ)判断并证明的奇偶性;(Ⅱ)求证:在定义域内恒为正。参考答案:略21.已知全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2},(1)求A∩B、(?UA)∪(?UB);(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求实数k的取值范围.参考答案:【考点】交、并、补集的混合运算;集合关系中的参数取值问题.【分析】(1)求出集合B,然后直接求A∩B,通过(CUA)∪(CUB)CU(A∩B)求解即可;(2)通过M=?与M≠?,利用集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,直接求实数k的取值范围.【解答】解:(1)因为全集U=R,集合A={x|x<﹣4,或x>1},B={x|﹣3≤x﹣1≤2}={x|﹣2≤x≤3},所以A∩B={x|1<x≤3};(CUA)∪(CUB)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨国采购合同策略分析
- 车辆借用合同协议范例模板
- 软装家具采购合同
- 进口木材采购合同
- 退款合同为您解决后顾之忧
- 酒店食材订购协议
- 采购市场营销服务
- 金属加工机械设备购销协议
- 铝合金散热器购销合同
- 销售提成承包协议
- 湖北省襄樊市襄城区2023年三下数学期末统考模拟试题含解析
- 省级高中数学优质课:周期函数-说课课件
- 2023深圳二模二元思辨作文“定理与定法”评卷实录-备战2023年高考语文作文考前必备素材与押题范文
- 2022年食品生产企业食品安全管理人员必备知识考试题库(含答案)
- 2023年军队文职备考(数学3+化学)岗位近年考试真题汇总(300题)
- Chinese Tea(中国茶)智慧树知到答案章节测试2023年东北林业大学
- 原材料、外购件、外协产品检验规范
- 动物消化吸收
- 小学生相声剧本(10篇)
- 水上客运企业安全风险辨识分级管控指南
- 2023年英语专业四级单选题汇总
评论
0/150
提交评论