内蒙古自治区满洲里市2024届数学九年级第一学期期末预测试题含解析_第1页
内蒙古自治区满洲里市2024届数学九年级第一学期期末预测试题含解析_第2页
内蒙古自治区满洲里市2024届数学九年级第一学期期末预测试题含解析_第3页
内蒙古自治区满洲里市2024届数学九年级第一学期期末预测试题含解析_第4页
内蒙古自治区满洲里市2024届数学九年级第一学期期末预测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古自治区满洲里市2024届数学九年级第一学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如果关于的方程没有实数根,那么的最大整数值是()A.-3 B.-2 C.-1 D.02.如图,正方形ABCD中,AD=6,E为AB的中点,将△ADE沿DE翻折得到△FDE,延长EF交BC于G,FH⊥BC,垂足为H,延长DF交BC与点M,连接BF、DG.以下结论:①∠BFD+∠ADE=180°;②△BFM为等腰三角形;③△FHB∽△EAD;④BE=2FM⑤S△BFG=2.6⑥sin∠EGB=;其中正确的个数是()A.3 B.4 C.5 D.63.一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A,那么此用电器的可变电阻应(

)A.不小于4.8Ω B.不大于4.8Ω C.不小于14Ω D.不大于14Ω4.一张圆形纸片,小芳进行了如下连续操作:将圆形纸片左右对折,折痕为AB,如图.将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图.将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图.连结AE、AF、BE、BF,如图.经过以上操作,小芳得到了以下结论:;四边形MEBF是菱形;为等边三角形;::.以上结论正确的有A.1个 B.2个 C.3个 D.4个5.已知是实数,则代数式的最小值等于()A.-2 B.1 C. D.6.在半径为6cm的圆中,长为6cm的弦所对的圆周角的度数为()A.30° B.60° C.30°或150° D.60°或120°7.从下列两组卡片中各摸一张,所摸两张卡片上的数字之和为5的概率是()第一组:1,2,3第二组:2,3,4A. B. C. D.8.下列运算中,结果正确的是()A. B. C. D.9.抛物线y=(x+2)2﹣3可以由抛物线y=x2平移得到,则下列平移过程正确的是()A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位 D.先向右平移2个单位,再向上平移3个单位10.已知,且α是锐角,则α的度数是()A.30° B.45° C.60° D.不确定二、填空题(每小题3分,共24分)11.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体最少是由________个正方体搭成的。12.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为.13.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.14.一个圆锥的底面圆的半径为2,母线长为4,则它的侧面积为______.15.编号为2,3,4,5,6的乒乓球放在不透明的袋内,从中任抽一个球,抽中编号是偶数的概率是___.16.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为.17.如图,抛物线与轴的负半轴交于点,与轴交于点,连接,点分别是直线与抛物线上的点,若点围成的四边形是平行四边形,则点的坐标为__________.18.过⊙O内一点M的最长弦为10cm,最短弦为8cm,则OM=cm.三、解答题(共66分)19.(10分)如图,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG时,求证:菱形EFGH为正方形.20.(6分)一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.21.(6分)如图,抛物线与轴交于A、B两点,与轴交于点C,抛物线的对称轴交轴于点D,已知点A的坐标为(-1,0),点C的坐标为(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.22.(8分)如图,已知正方形,点在延长线上,点在延长线上,连接、、交于点,若,求证:.23.(8分)如图,,,求的值.24.(8分)如图,圆内接四边形ABDC,AB是⊙O的直径,OD⊥BC于E.(1)求证:∠BCD=∠CBD;(2)若BE=4,AC=6,求DE的长.25.(10分)解方程:(1)x2+2x﹣3=0;(2)x(x+1)=2(x+1).26.(10分)已知:二次函数为(1)写出它的图象的开口方向,对称轴及顶点坐标;(2)为何值时,顶点在轴上方;(3)若抛物线与轴交于,过作轴交抛物线于另一点,当时,求此二次函数的解析式.

参考答案一、选择题(每小题3分,共30分)1、B【分析】先根据根的判别式求出k的取值范围,再从中找到最大整数即可.【题目详解】解得∴k的最大整数值是-2故选:B.【题目点拨】本题主要考查根的判别式,掌握根的判别式与根的个数的关系是解题的关键.2、C【分析】根据正方形的性质、折叠的性质、三角形外角的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理对各个选项依次进行判断、计算,即可得出答案.【题目详解】解:正方形ABCD中,,E为AB的中点,,,,

沿DE翻折得到,

,,,,

,,

又,

,∴,又∵,,∴∠BFD+∠ADE=180°,故①正确;∵,,∴又∵,,∴,∴MB=MF,∴△BFM为等腰三角形;故②正确;,,

∴,∴,又∵,∴,∵,,∴,

∽,故正确;

,,,

∵在和中,,

≌,,

设,则,,

在中,由勾股定理得:,

解得:,∴EG=5,,,∴sin∠EGB=,故⑥正确;

∵,,,∴,又∵,∴∽,∴∴BE=2FM,故④正确;∽,且,设,则,

在中,由勾股定理得:,

解得:舍去或,

,故错误;故正确的个数有5个,故选:C.【题目点拨】本题主要考查了正方形的性质、折叠的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定、勾股定理、三角函数等知识,本题综合性较强,证明三角形全等和三角形相似是解题的关键.3、A【分析】先由图象过点(1,6),求出U的值.再由蓄电池为电源的用电器限制电流不得超过10A,求出用电器的可变电阻的取值范围.【题目详解】解:由物理知识可知:I=UR,其中过点(1,6),故U=41,当I≤10时,由R≥4.1故选A.【题目点拨】本题考查反比例函数的图象特点:反比例函数y=kx的图象是双曲线,当k>0时,它的两个分支分别位于第一、三象限;当k<04、D【分析】根据折叠的性质可得∠BMD=∠BNF=90°,然后利用同位角相等,两直线平行可得CD∥EF,从而判定①正确;根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,然后根据对角线互相垂直平分的四边形是菱形求出四边形MEBF是菱形,从而得到②正确;根据直角三角形角所对的直角边等于斜边的一半求出∠MEN=30°,然后求出∠EMN=60°,根据等边对等角求出∠AEM=∠EAM,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠AEM=30°,从而得到∠AEF=60°,同理求出∠AFE=60°,再根据三角形的内角和等于180°求出∠EAF=60°,从而判定△AEF是等边三角形,③正确;设圆的半径为r,求出EN=,则可得EF=2EN=,即可得S四边形AEBF:S扇形BEMF的答案,所以④正确.【题目详解】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,故①正确;根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,∴四边形MEBF是菱形,故②正确;∵ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°-30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,故③正确;设圆的半径为r,则EN=,∴EF=2EN=,∴S四边形AEBF:S扇形BEMF=故④正确,综上所述,结论正确的是①②③④共4个.故选:D.【题目点拨】本题圆的综合题型,主要考查了翻折变换的性质,平行线的判定,对角线互相垂直平分的四边形是菱形,等边三角形的判定与性质.注意掌握折叠前后图形的对应关系是关键.5、C【分析】将代数式配方,然后利用平方的非负性即可求出结论.【题目详解】解:====∵∴∴代数式的最小值等于故选C.【题目点拨】此题考查的是利用配方法求最值,掌握完全平方公式是解决此题的关键.6、C【解题分析】试题解析:如图,弦AB所对的圆周角为∠C,∠D,连接OA、OB,因为AB=OA=OB=6,所以,∠AOB=60°,根据圆周角定理知,∠C=∠AOB=30°,根据圆内接四边形的性质可知,∠D=180°-∠C=150°,所以,弦AB所对的圆周角的度数30°或150°.故选C.7、D【分析】根据题意,通过树状图法即可得解.【题目详解】如下图,画树状图可知,从两组卡片中各摸一张,一共有9种可能性,两张卡片上的数字之和为5的可能性有3种,则P(两张卡片上的数字之和为5),故选:D.【题目点拨】本题属于概率初步题,熟练掌握树状图法或者列表法是解决本题的关键.8、C【解题分析】A:完全平方公式:,据此判断即可B:幂的乘方,底数不变,指数相乘,据此判断即可C:幂的乘方,底数不变,指数相乘D:同底数幂相除,底数不变指数相减【题目详解】选项A不正确;选项B不正确;选项C正确选项D不正确.故选:C【题目点拨】此题考查幂的乘方,完全平方公式,同底数幂的除法,掌握运算法则是解题关键9、B【解题分析】根据“左加右减,上加下减”的原则进行解答即可:∵y=x2,∴平移过程为:先向左平移2个单位,再向下平移3个单位.故选B.10、C【分析】根据sin60°=解答即可.【题目详解】解:∵α为锐角,sinα=,sin60°=,∴α=60°.故选:C.【题目点拨】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.二、填空题(每小题3分,共24分)11、【分析】易得这个几何体共有3层,由俯视图可得第一层立方体的个数,由主视图可得第二层、第三层立方体最少的个数,相加即可.【题目详解】结合主视图和俯视图可知,第一层、第二层最少各层最少1个,第三层一定有3个,∴组成这个几何体的小正方体的个数最少是1个,故答案为:1.【题目点拨】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.12、(x+1);.【解题分析】试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.故答案为(x+1),.考点:由实际问题抽象出一元二次方程;勾股定理的应用.13、【分析】根据弧长的公式列式计算即可.【题目详解】∵一个扇形的半径长为3,且圆心角为60°,

∴此扇形的弧长为=π.

故答案为:π.【题目点拨】此题考查弧长公式,熟记公式是解题关键.14、8π【解题分析】圆锥的侧面积=底面周长×母线长÷1.【题目详解】解:底面半径为1,则底面周长=4π,圆锥的侧面积=×4π×4=8π,

故答案为:8π.【题目点拨】本题利用了圆的周长公式和扇形面积公式求解,解题的关键是了解圆锥的侧面积的计算方法,难度不大.15、.【解题分析】直接利用概率公式求解可得.【题目详解】在这5个乒乓球中,编号是偶数的有3个,所以编号是偶数的概率为,故答案为:.【题目点拨】本题考查了概率公式,关键是掌握随机事件的概率事件可能出现的结果数÷所有可能出现的结果数.16、12﹣4【题目详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案为12﹣4.考点:1、旋转的性质;2、菱形的性质.17、或或【分析】根据二次函数与x轴的负半轴交于点,与轴交于点.直接令x=0和y=0求出A,B的坐标.再根据平行四边形的性质分情况求出点E的坐标.【题目详解】由抛物线的表达式求得点的坐标分别为.由题意知当为平行四边形的边时,,且,∴线段可由线段平移得到.∵点在直线上,①当点的对应点为时,如图,需先将向左平移1个单位长度,此时点的对应点的横坐标为,将代入,得,∴.②当点A的对应点为时,同理,先将向右平移2个单位长度,可得点的对应点的横坐标为2,将代入得,∴当为平行四边形的对角线时,可知的中点坐标为,∵在直线上,∴根据对称性可知的横坐标为,将代入得,∴.综上所述,点的坐标为或或.【题目点拨】本题是二次函数的综合题,主要考查了特殊点的坐标的确定,平行四边形的性质,解本题的关键是分情况解决问题的思想.18、3【解题分析】试题分析:最长弦即为直径,最短弦即为以M为中点的弦,所以此时考点:弦心距与弦、半径的关系点评:三、解答题(共66分)19、(1)证明见解析;(2)证明见解析.【分析】(1)连接GE,根据正方形的性质和平行线的性质得到∠AEG=∠CGE,根据菱形的性质和平行线的性质得到∠HEG=∠FGE,解答即可;(2)证明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,证明∠GHE=90°,根据正方形的判定定理证明.【题目详解】解:(1)连接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中,∴Rt△HAE≌Rt△GDH(HL),∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.【题目点拨】本题考查的是正方形的性质、菱形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用相关的性质定理和判定定理是解题的关键.20、【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【题目详解】解:画树状图得:∵共有9种可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【题目点拨】此题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.解题关键是求出总情况和所求事件情况数.21、(1)y=﹣x2+x+2;(2)存在,点P坐标为(,4)或(,)或(,﹣).【分析】(1)根据点,利用待定系数法求解即可得;(2)根据等腰三角形的定义,分和,再分别利用两点之间的距离公式求出点P坐标即可.【题目详解】(1)将点代入抛物线的解析式得解得故二次函数的解析式为;(2)存在,求解过程如下:由二次函数的解析式可知,其对称轴为则点D的坐标为,可设点P坐标为由勾股定理得,由等腰三角形的定义,分以下2种情况:①当时,则解得或(不符题意,舍去),因此,点P坐标为②当时,解得,因此,点P坐标为或综上,存在满足条件的点P,点P坐标为或或.【题目点拨】本题考查了利用待定系数法求函数的解析式、二次函数的几何应用、等腰三角形的定义等知识点,较难的是(2),依据等腰三角形的定义,正确分两种情况讨论是解题关键.22、见解析.【分析】根据已知条件证明△ADG≌△CDF,得到∠ADG=∠CDF,根据AD∥BC,推出∠CDF=∠E,由此证明△CDE∽△CFD,即可得到答案.【题目详解】∵四边形ABCD是正方形,∴∠A=∠BCD=90,AD=CD,∴∠DCF=∠A=90,又∵,∴△ADG≌△CDF,∴∠ADG=∠CDF,∵AD∥BC,∴∠ADG=∠E,∴∠CDF=∠E,∵∠BCD=∠DCF=90,∴△CDE∽△CFD,∴,∴.【题目点拨】此题考查正方形的性质,三角形全等的判定及性质,三角形相似的判定及性质,在证明题中证明线段成比例的关系通常证明三角形相似,由此得到边的对应比的关系,注意解题方法的积累.23、【分析】证明△AFG∽△BFD,可得,由AG∥BD,可得△AEG∽△CED,则结论得出.【题目详解】解:∵,∴,∴.∵,∴,∴.∵,∴,∴.【题目点拨】此题考查相似三角形的判定和性质,平行线的性质,解题的关键是熟练掌握基本知识.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论