![浙江省台州市路桥区九校2024届数学九年级第一学期期末统考试题含解析_第1页](http://file4.renrendoc.com/view/a4a3453801dbaa64eedaeb995996b731/a4a3453801dbaa64eedaeb995996b7311.gif)
![浙江省台州市路桥区九校2024届数学九年级第一学期期末统考试题含解析_第2页](http://file4.renrendoc.com/view/a4a3453801dbaa64eedaeb995996b731/a4a3453801dbaa64eedaeb995996b7312.gif)
![浙江省台州市路桥区九校2024届数学九年级第一学期期末统考试题含解析_第3页](http://file4.renrendoc.com/view/a4a3453801dbaa64eedaeb995996b731/a4a3453801dbaa64eedaeb995996b7313.gif)
![浙江省台州市路桥区九校2024届数学九年级第一学期期末统考试题含解析_第4页](http://file4.renrendoc.com/view/a4a3453801dbaa64eedaeb995996b731/a4a3453801dbaa64eedaeb995996b7314.gif)
![浙江省台州市路桥区九校2024届数学九年级第一学期期末统考试题含解析_第5页](http://file4.renrendoc.com/view/a4a3453801dbaa64eedaeb995996b731/a4a3453801dbaa64eedaeb995996b7315.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省台州市路桥区九校2024届数学九年级第一学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.共享单车已经成为城市公共交通的重要组成部分,某共享单车公司经过调查获得关于共享单车租用行驶时间的数据,并由此制定了新的收费标准:每次租用单车行驶a小时及以内,免费骑行;超过a小时后,每半小时收费1元,这样可保证不少于50%的骑行是免费的.制定这一标准中的a的值时,参考的统计量是此次调查所得数据的()A.平均数 B.中位数 C.众数 D.方差2.要使分式有意义,则x应满足的条件是()A.x<2 B.x≠2 C.x≠0 D.x>23.如图,在△ABC中,DE∥BC,BE和CD相交于点F,且S△EFC=3S△EFD,则S△ADE:S△ABC的值为()A.1:3 B.1:8 C.1:9 D.1:44.在△ABC中,∠C90°.若AB3,BC1,则的值为()A. B. C. D.5.如图,在△ABC中,点D是在边BC上,且BD=2CD,AB=a,BC=b,那么AD等于()A.AD=a+b B.AD=23a+23b C.AD=a-23b6.定义新运算:对于两个不相等的实数,,我们规定符号表示,中的较大值,如:.因此,;按照这个规定,若,则的值是()A.-1 B.-1或 C. D.1或7.如图,在平面直角坐标系中,将正方形绕点逆时针旋转45°后得到正方形.依此方式,绕点连续旋转2020次,得到正方形,如果点的坐标为,那么点的坐标为()A. B. C. D.8.抛物线y=-(x-2)2+3,下列说法正确的是()A.开口向下,顶点坐标(2,3) B.开口向上,顶点坐标(2,-3)C.开口向下,顶点坐标(-2,3) D.开口向上,顶点坐标(-2,-3)9.如图,二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(3,0),对称轴为直线x=1,下列结论:①abc>0;②2a+b=0;③4a﹣2b+c>0;④当y>0时,﹣1<x<3;⑤b<c.其中正确的个数是()A.2 B.3 C.4 D.510.如图,在△ABC中,中线AD、BE相交于点F,EG∥BC,交AD于点G,则的值是()A. B. C. D.二、填空题(每小题3分,共24分)11.若二次函数(为常数)的最大值为3,则的值为________.12.将抛物线向下平移个单位,那么所得抛物线的函数关系是________.13.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则BE:BC的值为_________.14.我们将等腰三角形腰长与底边长的差的绝对值称为该三角形的“边长正度值”,若等腰三角形腰长为5,“边长正度值”为3,那么这个等腰三角形底角的余弦值等于__________.15.如图,为了测量塔的高度,小明在处仰望塔顶,测得仰角为,再往塔的方向前进至处,测得仰角为,那么塔的高度是____________.(小明的身高忽略不计,结果保留根号)16.如图,抛物线与直线交于A(-1,P),B(3,q)两点,则不等式的解集是_____.17.已知正六边形的边长为10,那么它的外接圆的半径为_____.18.在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD'P,PD'的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E,F.现有以下结论:①连接DD',则AP垂直平分DD';②四边形PMBN是菱形;③AD2=DP•PC;④若AD=2DP,则;其中正确的结论是_____(填写所有正确结论的序号)三、解答题(共66分)19.(10分)如图,是的直径,,为弧的中点,正方形绕点旋转与的两边分别交于、(点、与点、、均不重合),与分别交于、两点.(1)求证:为等腰直角三角形;(2)求证:;(3)连接,试探究:在正方形绕点旋转的过程中,的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.20.(6分)如图,抛物线y=a(x+2)(x﹣4)与x轴交于A,B两点,与y轴交于点C,且∠ACO=∠CBO.(1)求线段OC的长度;(2)若点D在第四象限的抛物线上,连接BD、CD,求△BCD的面积的最大值;(3)若点P在平面内,当以点A、C、B、P为顶点的四边形是平行四边形时,直接写出点P的坐标.21.(6分)随着私家车的增多,“停车难”成了很多小区的棘手问题.某小区为解决这个问题,拟建造一个地下停车库.如图是该地下停车库坡道入口的设计示意图,其中,入口处斜坡的坡角为,水平线.根据规定,地下停车库坡道入口上方要张贴限高标志,以提醒驾驶员所驾车辆能否安全驶入.请求出限制高度为多少米,(结果精确到,参考数据:,,).22.(8分)某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸袋(为正整数),则购买小红旗多少袋能恰好配套?请用含的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付元,求关于的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?23.(8分)如图,已知三个顶点的坐标分别为,,(1)请在网格中,画出线段关于原点对称的线段;(2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标;(3)若另有一点,连接,则.24.(8分)每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售.降价前,进价为30元的护眼台灯以80元售出,平均每月能售出200盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏.(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式;(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?25.(10分)如图,直线和反比例函数的图象交于两点,已知点的坐标为.(1)求该反比例函数的解析式;(2)求出点关于原点的对称点的坐标;(3)连接,求的面积.26.(10分)如图,是的直径,且,点为外一点,且,分别切于点、两点.与的延长线交于点.(1)求证:;(2)填空:①当__________时,四边形是正方形.②当____________时,为等边三角形.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据需要保证不少于50%的骑行是免费的,可得此次调查的参考统计量是此次调查所得数据的中位数.【题目详解】因为需要保证不少于50%的骑行是免费的,所以制定这一标准中的a的值时,参考的统计量是此次调查所得数据的中位数,故选B.【题目点拨】本题考查了中位数的知识,中位数是以它在所有标志值中所处的位置确定的全体单位标志值的代表值,不受分布数列的极大或极小值影响,从而在一定程度上提高了中位数对分布数列的代表性.2、B【解题分析】本题主要考查分式有意义的条件:分母不能为1.【题目详解】解:∵x﹣2≠1,∴x≠2,故选B.【题目点拨】本题考查的是分式有意义的条件,当分母不为1时,分式有意义.3、C【分析】根据题意,易证△DEF∽△CBF,同理可证△ADE∽△ABC,根据相似三角形面积比是对应边比例的平方即可解答.【题目详解】∵S△EFC=3S△DEF,∴DF:FC=1:3(两个三角形等高,面积之比就是底边之比),∵DE∥BC,∴△DEF∽△CBF,∴DE:BC=DF:FC=1:3同理△ADE∽△ABC,∴S△ADE:S△ABC=1:9,故选:C.【题目点拨】本题考查相似三角形的判定和性质,解题的关键是掌握相似三角形面积比是对应边比例的平方.4、A【解题分析】∵在△ABC中,∠C=90°,AB=3,BC=1,∴sinA=.故选A.5、D【解题分析】利用平面向量的加法即可解答.【题目详解】解:根据题意得BD=23AD=AB+BD=故选D.【题目点拨】本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.6、B【分析】分x>0和0x<0两种情况分析,利用公式法解一元二次方程即可.【题目详解】解:当x>0时,有,解得,(舍去),
x<0时,有,解得,x1=−1,x2=2(舍去).故选B.【题目点拨】此题主要考查了一元二次方程的解法,解题的关键是掌握新定义以及掌握因式分解法以及公式法解方程的方法步骤,掌握降次的方法,把二次化为一次,再解一元一次方程.7、A【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【题目详解】解:∵四边形OABC是正方形,且OA=,
∴A1(,),
如图,由旋转得:OA=OA1=OA2=OA3=…=,
∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,
相当于将线段OA绕点O逆时针旋转45°,依次得到∠AOA1=∠A1OA2=∠A2OA3=…=45°,
∴A1(1,1),A2(0,),A3(,),A4(,0)…,
发现是8次一循环,所以2020÷8=252…余4,
∴点A2020的坐标为(,0);故选:A.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.8、A【解题分析】根据抛物线的解析式,由a的值可得到开口方向,由顶点式可以得到顶点坐标.【题目详解】解:∵y=-(x-2)2+3∴a=-1<0,抛物线的开口向下,顶点坐标(2,3)故选A【题目点拨】本题考查二次函数的性质,解题的关键是根据二次函数的解析式可以得到开口方向、对称轴、顶点坐标等性质.9、B【分析】根据二次函数y=ax2+bx+c的图象与性质依次进行判断即可求解.【题目详解】解:∵抛物线开口向下,∴a<0;∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,所以②正确;∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵抛物线与x轴的一个交点坐标是(3,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点坐标是(﹣1,0),∴x=﹣2时,y<0,∴4a﹣2b+c<0,所以③错误;∵抛物线与x轴的2个交点坐标为(﹣1,0),(3,0),∴﹣1<x<3时,y>0,所以④正确;∵x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴c=﹣3a,∴b﹣c=﹣2a+3a=a<0,即b<c,所以⑤正确.故选B.【题目点拨】此题主要考查二次函数的图像与性质,解题的关键是熟知二次函数的图像性质特点.10、C【分析】先证明AG=GD,得到GE为△ADC的中位线,由三角形的中位线可得GEDCBD;由EG∥BC,可证△GEF∽△BDF,由相似三角形的性质,可得;设GF=x,用含x的式子分别表示出AG和AF,则可求得答案.【题目详解】∵E为AC中点,EG∥BC,∴AG=GD,∴GE为△ADC的中位线,∴GEDCBD.∵EG∥BC,∴△GEF∽△BDF,∴,∴FD=2GF.设GF=x,则FD=2x,AG=GD=GF+FD=x+2x=3x,AF=AG+GF=3x+x=4x,∴.故选:C.【题目点拨】本题考查了三角形的中位线定理及相似三角形的判定与性质,熟练掌握相关定理及性质,是解答本题的关键.二、填空题(每小题3分,共24分)11、-1【分析】根据二次函数的最大值公式列出方程计算即可得解.【题目详解】由题意得,,
整理得,,
解得:,
∵二次函数有最大值,
∴,
∴.
故答案为:.【题目点拨】本题考查了二次函数的最值,易错点在于要考虑a的正负情况.12、【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的坐标规律写出平移后顶点坐标,然后利用顶点式写出平移后的抛物线解析式.【题目详解】解:的顶点坐标为,把点向下平移个单位得到的对应点的坐标为,所以平移后的抛物线的解析式是.故答案为:.【题目点拨】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13、1:4【解题分析】由S△BDE:S△CDE=1:3,得到
,于是得到
.【题目详解】解:两个三角形同高,底边之比等于面积比.故答案为【题目点拨】本题考查了三角形的面积,比例的性质等知识,知道等高不同底的三角形的面积的比等于底的比是解题的关键.14、或【解题分析】将情况分为腰比底边长和腰比底边短两种情况来讨论,根据题意求出底边的长进而求出余弦值即可.【题目详解】当腰比底边长长时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为2,所以这个等边三角形底角的余弦值为;当腰比底边长短时,若等腰三角形的腰长为5,“边长正度值”为3,那么底边长为8,所以这个等边三角形底角的余弦值为.【题目点拨】本题主要考查对新定义的理解能力、角的余弦的意义,熟练掌握角的余弦的意义是解答本题的关键.15、【分析】由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.【题目详解】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,
∴∠ADB=∠DBC-∠A=30°,
∴∠ADB=∠A=30°,
∴BD=AB=60m,
∴CD=BD•sin60°=60×=30(m).
故答案为:30.【题目点拨】此题考查了解直角三角形的应用-仰角俯角问题.注意证得△ABD是等腰三角形,利用特殊角的三角函数值求解是关键.16、或.【分析】由可变形为,即比较抛物线与直线之间关系,而直线PQ:与直线AB:关于与y轴对称,由此可知抛物线与直线交于,两点,再观察两函数图象的上下位置关系,即可得出结论.【题目详解】解:∵抛物线与直线交于,两点,∴,,∴抛物线与直线交于,两点,观察函数图象可知:当或时,直线在抛物线的下方,∴不等式的解集为或.故答案为或.【题目点拨】本题考查了二次函数与不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.17、1【分析】利用正六边形的概念以及正六边形外接圆的性质进而计算.【题目详解】边长为1的正六边形可以分成六个边长为1的正三角形,∴外接圆半径是1,故答案为:1.【题目点拨】本题考查了正六边形的概念以及正六边形外接圆的性质,掌握正六边形的外接圆的半径等于其边长是解题的关键.18、①②③【分析】根据折叠的性质得出AP垂直平分DD',判断出①正确.过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG•GB,即AD2=DP•PC判断出③正确;DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;判断出②正确;由于,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,从而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得,,从而可求出EF=AF﹣AE=AC﹣=AC,从而可得,判断出④错误.【题目详解】解:∵将△ADP沿AP翻折得到△AD'P,∴AP垂直平分DD',故①正确;解法一:过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;解法二:易证:△ADP∽△PCB,∴,由于AD=CB,∴AD2=DP•PC;故③正确;∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;故②正确;由于,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG•GB,∴4=1•GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴,∴又易证:△PCE∽△MAE,AM=AB=∴,∴,∴EF=AF﹣AE=AC﹣=AC∴,故④错误,即:正确的有①②③,故答案为:①②③.【题目点拨】本题是一道关于矩形折叠的综合题目,考查的知识点有折叠的性质,矩形的性质,相似三角形的性质,菱形的判定等,此题充分考查了学生对所学知识点的掌握情况以及综合利用能力,是一道很好的题目.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)存在,【分析】(1)根据圆周角定理由AB是⊙O的直径得∠AMB=90°,由M是弧AB的中点得,于是可判断△AMB为等腰直角三角形;(2)连接OM,根据等腰直角三角形的性质得∠ABM=∠BAM=∠OMA=45°,OM⊥AB,MB=AB=6,再利用等角的余角相等得∠BOE=∠MOF,则可根据“SAS”判断△OBE≌△OMF,所以OE=OF;(3)易得△OEF为等腰直角三角形,则EF=OE,再由△OBE≌△OMF得BE=MF,所以△EFM的周长=EF+MF+ME=EF+MB=OE+4,根据垂线段最短得当OE⊥BM时,OE最小,此时OE=BM=2,进而求得△EFM的周长的最小值.【题目详解】(1)证明:是的直径,.是弧的中点,.,为等腰直角三角形.(2)证明:连接,由(1)得:.,.,,.在和中,,..(3)解:的周长有最小值.,为等腰直角三角形,,,.的周长.当时,最小,此时,的周长的最小值为.【题目点拨】本题考查了圆的综合题:熟练运用圆周角定理和等腰直角三角形的判定与性质,全等三角形的判定与性质是解题关键.20、(1)2;(2)2;(3)(2,2),(6,﹣2)或(﹣6,﹣2)【分析】(1)由抛物线的解析式先求出点A,B的坐标,再证△AOC∽△COB,利用相似三角形的性质可求出CO的长;(2)先求出抛物线的解析式,再设出点D的坐标(m,m2﹣m﹣2),用含m的代数式表示出△BCD的面积,利用函数的性质求出其最大值;(3)分类讨论,分三种情况由平移规律可轻松求出点P的三个坐标.【题目详解】(1)在抛物线y=a(x+2)(x﹣4)中,当y=0时,x1=﹣2,x2=4,∴A(﹣2,0),B(4,0),∴AO=2,BO=4,∵∠ACO=∠CBO,∠AOC=∠COB=90°,∴△AOC∽△COB,∴,即,∴CO=2;(2)由(1)知,CO=2,∴C(0,﹣2)将C(0,﹣2)代入y=a(x+2)(x﹣4),得,a=,∴抛物线解析式为:y=x2﹣x﹣2,如图1,连接OD,设D(m,m2﹣m﹣2),则S△BCD=S△OCD+S△OBD﹣S△BOC=×2m+×4(﹣m2+m+2)﹣×4×2=﹣m2+2m=﹣(m﹣2)2+2,根据二次函数的图象及性质可知,当m=2时,△BCD的面积有最大值2;(3)如图2﹣1,当四边形ACBP为平行四边形时,由平移规律可知,点C向右平移4个单位长度,再向上平移2个单位长度得到点B,所以点A向右平移4个单位长度,再向上平移2个单位长度得到点P,因为A(﹣2,0),所以P1(2,2);同理,在图2﹣2,图2﹣3中,可由平移规律可得P2(6,﹣2),P3(﹣6,﹣2);综上所述,当以点A、C、B、P为顶点的四边形是平行四边形时,点P的坐标为(2,2),(6,﹣2),P3(﹣6,﹣2).【题目点拨】本题考查了相似三角形的判定与性质,待定系数法求二次函数的解析式,三角形的面积及平移规律等,解题关键是熟知平行四边形的性质及熟练运用平移规律.21、2.6米.【分析】根据锐角三角函数关系得出CF以及DF的长,进而得出DE的长即可得出答案.【题目详解】过点D作DE⊥AB于点E,延长CD交AB于点F.在△ACF中,∠ACF=90°,∠CAF=20°,AC=12,
∴,∴(m),∴(m),在△DFE中,,
又∵DE⊥AB,
∴,
∴,∴(m),答:地下停车库坡道入口限制高度约为2.6m.【题目点拨】本题考查了解直角三角形的应用,主要是余弦、正切概念及运算,关键把实际问题转化为数学问题加以计算.22、(1)每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)购买小红旗袋恰好配套;(3)需要购买国旗图案贴纸和小红旗各48,60袋,总费用元.【解题分析】(1)设每袋国旗图案贴纸为元,则有,解得,检验后即可求解;(2)设购买袋小红旗恰好与袋贴纸配套,则有,解得;(3)如果没有折扣,,国旗贴纸需要:张,小红旗需要:面,则袋,袋,总费用元.【题目详解】(1)设每袋国旗图案贴纸为元,则有,解得,经检验是方程的解,∴每袋小红旗为元;答:每袋国旗图案贴纸为15元,每袋小红旗为20元;(2)设购买袋小红旗恰好与袋贴纸配套,则有,解得,答:购买小红旗袋恰好配套;(3)如果没有折扣,则,依题意得,解得,当时,则,即,国旗贴纸需要:张,小红旗需要:面,则袋,袋,总费用元.【题目点拨】本题考查分式方程,一次函数的应用,能够根据题意列出准确的分式方程,求费用的最大值转化为求一次函数的最大值是解题的关键.23、(1)见解析;(2)见解析,;(3)1.【分析】(1)分别作出点B、C关于原点对称的点,然后连接即可;(2)根据网格特点,找到AB的中点D,作直线CD,根据点D的位置写出坐标即可;(3)连接BP,证明△BPC是等腰直角三角形,继而根据正切的定义进行求解即可.【题目详解】(1)如图所示,线段B1C1即为所求作的;(2)如图所示,D(-1,-4);(3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度建筑工程施工劳务分包合同社会责任履行协议
- 2025年度合同担保业务流程优化指南
- 红河云南红河市红河县公安局招聘警务辅助人员笔试历年参考题库附带答案详解
- 百色2025年广西百色市西林县民政局招聘4人笔试历年参考题库附带答案详解
- 甘肃2025年甘肃省公安厅招聘辅警45人笔试历年参考题库附带答案详解
- 武汉2025年湖北武汉理工大学思想政治理论课教师(辅导员专项)招聘笔试历年参考题库附带答案详解
- 平顶山2024年河南平顶山市委机构编制委员会办公室所属事业单位招聘3人笔试历年参考题库附带答案详解
- 2025年中国二位三通电控换向阀市场调查研究报告
- 2025至2031年中国防爆敲击呆扳手行业投资前景及策略咨询研究报告
- 2025年胶囊冲填机项目可行性研究报告
- HYT 235-2018 海洋环境放射性核素监测技术规程
- ISO28000:2022供应链安全管理体系
- 中国香葱行业市场现状分析及竞争格局与投资发展研究报告2024-2034版
- 妇科恶性肿瘤免疫治疗中国专家共识(2023)解读
- 2024年浪潮入职测评题和答案
- 小班数学《整理牛奶柜》课件
- 中考语文真题双向细目表
- 我国新零售业上市公司财务质量分析-以苏宁易购为例
- 药品集采培训课件
- 股骨干骨折教学演示课件
- 动静脉内瘘血栓
评论
0/150
提交评论