版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省滁州市琅琊区数学九上期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.二次函数的图像如图所示,它的对称轴为直线,与轴交点的横坐标分别为,,且.下列结论中:①;②;③;④方程有两个相等的实数根;⑤.其中正确的有()A.②③⑤ B.②③ C.②④ D.①④⑤2.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在A的下方,点E是边长为2,中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为A.3 B. C.4 D.3.如图,过反比例函数的图象上一点作轴于点,连接,若,则的值为()A.2 B.3 C.4 D.54.在一个有10万人的小镇,随机调查了1000人,其中有120人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是()A. B. C. D.5.在一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,是白球的概率为(
)A. B. C. D.6.如图,在△ABC中,点G为△ABC的重心,过点G作DE∥BC,分别交AB、AC于点D、E,则△ADE与四边形DBCE的面积比为()A. B. C. D.7.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,连接AB,若∠B=25°,则∠P的度数为()A.25° B.40° C.45° D.50°8.在中,,若已知,则()A. B. C. D.9.图中所示的几个图形是国际通用的交通标志.其中不是轴对称图形的是()A. B. C. D.10.若x=2是关于x的一元二次方程x2﹣ax=0的一个根,则a的值为()A.1 B.﹣1 C.2 D.﹣211.下列方程中,是一元二次方程的是().A. B. C. D.12.如图,若A、B、C、D、E,甲、乙、丙、丁都是方格纸中的格点,为使△ABC与△DEF相似,则点F应是甲、乙、丙、丁四点中的().A.甲 B.乙 C.丙 D.丁二、填空题(每题4分,共24分)13.如图,正六边形ABCDEF内接于O,点M是边CD的中点,连结AM,若圆O的半径为2,则AM=____________.14.如图,BC⊥y轴,BC<OA,点A、点C分别在x轴、y轴的正半轴上,D是线段BC上一点,BD=OA=2,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°,将△AEF沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE的值为_____.15.已知△ABC与△DEF相似,相似比为2:3,如果△ABC的面积为4,则△DEF的面积为_____.16.如图1,是一建筑物造型的纵截面,曲线是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线,,是与水平线垂直的两根支柱,米,米,米.(1)如图1,为了安全美观,准备拆除支柱、,在水平线上另找一点作为地面上的支撑点,用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_________.(2)如图2,在水平线上增添一张米长的椅子(在右侧),用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_______________.17.如图,有九张分别印有如下车标的卡片(卡片中除图案不同外,其余均相同)现将带图案的一面朝下摆放,从中任意抽取一张,抽到的是中心对称图形车标卡片的概率是_______.18.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数,用表示这三个数中最小的数,例如,.请结合上述材料,求_____.三、解答题(共78分)19.(8分)先化简,再求值:,期中.20.(8分)如图,△ABC内接于⊙O,AB是⊙O的直径,过点A作AD平分∠BAC,交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.(1)依据题意,补全图形(尺规作图,保留痕迹);(2)判断并证明:直线DE与⊙O的位置关系;(3)若AB=10,BC=8,求CE的长.21.(8分)先化简,再求值:÷(1﹣),其中a是方程x2+x﹣2=0的解.22.(10分)已知如图,⊙O的半径为4,四边形ABCD为⊙O的内接四边形,且∠C=2∠A.(1)求∠A的度数.(2)求BD的长.23.(10分)小涛根据学习函数的经验,对函数的图像与性质进行了探究,下面是小涛的探究过程,请补充完整:(1)下表是与的几组对应值...-2-10123......-8-30mn13...请直接写出:=,m=,n=;(2)如图,小涛在平面直角坐标系中,描出了上表中已经给出的部分对应值为坐标的点,再描出剩下的点,并画出该函数的图象;(3)请直接写出函数的图像性质:;(写出一条即可)(4)请结合画出的函数图象,解决问题:若方程有三个不同的解,请直接写出的取值范围.24.(10分)某游乐场试营业期间,每天运营成本为1000元.经统计发现,每天售出的门票张数(张)与门票售价(元/张)之间满足一次函数,设游乐场每天的利润为(元).(利润=票房收入-运营成本)(1)试求与之间的函数表达式.(2)游乐场将门票售价定为多少元/张时,每天获利最大?最大利润是多少元?25.(12分)如图,某中学九年级“智慧之星”数学社团的成员利用周末开展课外实践活动,他们要测量中心公园内的人工湖中的两个小岛,间的距离.借助人工湖旁的小山,某同学从山顶处测得观看湖中小岛的俯角为,观看湖中小岛的俯角为.已知小山的高为180米,求小岛,间的距离.26.某公司营销两种产品,根据市场调研,确定两条信息:信息1:销售种产品所获利润(万元)与所销售产品(吨)之间存在二次函数关系,如图所示信息2:销售种产品所获利润(万元)与销售产品(吨)之间存在正比例函数关系根据以上信息,解答下列问题:(1)求二次函数的表达式;(2)该公司准备购进两种产品共10吨,请设计一个营销方案使销售两种产品获得的利润之和最大,最大利润是多少万元?
参考答案一、选择题(每题4分,共48分)1、A【分析】利用抛物线开口方向得到a<0,利用对称轴位置得到b>0,利用抛物线与y轴的交点在x轴下方得c<0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【题目详解】∵抛物线开口向下,∴a<0,∵对称轴为直线∴b=-2a>0∵抛物线与y轴的交点在x轴下方,∴c<-1,∴abc>0,所以①错误;∵,对称轴为直线∴故,②正确;∵对称轴x=1,∴当x=0,x=2时,y值相等,故当x=0时,y=c<0,∴当x=2时,y=,③正确;如图,作y=2,与二次函数有两个交点,故方程有两个不相等的实数根,故④错误;∵当x=-1时,y=a-b+c=3a+c>0,当x=0时,y=c<-1∴3a>1,故,⑤正确;故选A.【题目点拨】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.2、B【分析】首先分析得到当点E旋转至y轴正方向上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长.【题目详解】如图,当点E旋转至y轴正方向上时DE最小.∵△ABC是等边三角形,D为BC的中点,∴AD⊥BC.∵AB=BC=2,∴AD=AB•sin∠B=.∵正六边形的边长等于其半径,正六边形的边长为2,∴OE=OE′=2∵点A的坐标为(0,1),∴OA=1.∴.故选B.3、C【分析】根据,利用反比例函数系数的几何意义即可求出值,再根据函数在第一象限可确定的符号.【题目详解】解:由轴于点,,得到又因图象过第一象限,,解得故选C【题目点拨】本题考查了反比例函数系数的几何意义.4、C【解题分析】试题解析:由题意知:1000人中有120人看中央电视台的早间新闻,∴在该镇随便问一人,他看早间新闻的概率大约是.故选C.【题目点拨】本题考查概率公式和用样本估计总体,概率计算一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5、D【解题分析】一个不透明的袋中装有10个只有颜色不同的球,其中5个红球、3个黄球和2个白球.从袋中任意摸出一个球,共有10种等可能的结果,其中摸出白球的所有等可能结果共有2种,根据概率公式即可得出答案.【题目详解】根据题意:从袋中任意摸出一个球,是白球的概率为==.故答案为D【题目点拨】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6、A【分析】连接AG并延长交BC于H,如图,利用三角形重心的性质得到AG=2GH,再证明△ADE∽△ABC,根据相似三角形的性质得到==,然后根据比例的性质得到△ADE与四边形DBCE的面积比.【题目详解】解:连接AG并延长交BC于H,如图,∵点G为△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE与四边形DBCE的面积比=.故选:A.【题目点拨】本题考查了三角形的重心与相似三角形的性质与判定.重心到顶点的距离与重心到对边中点的距离之比为2∶1.7、B【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【题目详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【题目点拨】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.8、B【分析】根据题意利用三角函数的定义,定义成三角形的边的比值,进行分析计算即可求解.【题目详解】解:在中,,∵,设BC=3x,则AC=4x,根据勾股定理可得:,∴.故选:B.【题目点拨】本题主要考查三角函数的定义,注意掌握求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.9、C【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.【题目详解】A、B、D都是轴对称图形,而C不是轴对称图形.
故选C.【题目点拨】本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、C【分析】将x=2代入原方程即可求出a的值.【题目详解】将x=2代入x2﹣ax=0,∴4﹣2a=0,∴a=2,故选:C.【题目点拨】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.11、A【分析】根据一元二次方程的定义进行判断.【题目详解】A、符合题意;B、是一元一次方程,不符合题意;C、是二元一次方程,不符合题意;D、是分式方程,不符合题意;故选A.【题目点拨】本题考查一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.12、A【分析】令每个小正方形的边长为1,分别求出两个三角形的边长,从而根据相似三角形的对应边成比例即可找到点F对应的位置.【题目详解】解:根据题意,△ABC的三边之比为要使△ABC∽△DEF,则△DEF的三边之比也应为经计算只有甲点合适,
故选:A.
【题目点拨】本题考查了相似三角形的判定定理:
(1)两角对应相等的两个三角形相似.
(2)两边对应成比例且夹角相等的两个三角形相似.
(3)三边对应成比例的两个三角形相似.二、填空题(每题4分,共24分)13、【分析】连接AD,过M作MG⊥AD于G,根据正六边形的相关性质,求得AD,MD的值,再根据∠CDG=60°,求出DG,MG的值,最后利用勾股定理求出AM的值.【题目详解】解:连接AD,过M作MG⊥AD于G,则由正六边形可得,AD=2AB=4,∠CDA=60°,又MD=CD=1,∴DG=,MG=,∴AG=AD-DG=,∴AM=故答案为.【题目点拨】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,作出辅助线构造直角三角形是解题的关键.14、6﹣或6或9﹣3【分析】可得到∠DOE=∠EAF,∠OED=∠AFE,即可判定△DOE∽△EAF,分情况进行讨论:①当EF=AF时,△AEF沿AE翻折,所得四边形为菱形,进而得到OE的长;②当AE=AF时,△AEF沿EF翻折,所得四边形为菱形,进而得到OE的长;③当AE=EF时,△AEF沿AF翻折,所得四边形为菱形,进而得到OE的长.【题目详解】解:连接OD,过点BH⊥x轴,①沿着EA翻折,如图1:∵∠OAB=45°,AB=3,∴AH=BH=ABsin45°=,∴CO=,∵BD=OA=2,∴BD=2,OA=8,∴BC=8﹣,∴CD=6﹣;∵四边形FENA是菱形,∴∠FAN=90°,∴四边形EFAN是正方形,∴△AEF是等腰直角三角形,∵∠DEF=45°,∴DE⊥OA,∴OE=CD=6﹣;②沿着AF翻折,如图2:∴AE=EF,∴B与F重合,∴∠BDE=45°,∵四边形ABDE是平行四边形∴AE=BD=2,∴OE=OA﹣AE=8﹣2=6;③沿着EF翻折,如图3:∴AE=AF,∵∠EAF=45°,∴△AEF是等腰三角形,过点F作FM⊥x轴,过点D作DN⊥x轴,∴△EFM∽△DNE,∴,∴,∴NE=3﹣,∴OE=6﹣+3﹣=9﹣3;综上所述:OE的长为6﹣或6或9﹣3,故答案为6﹣或6或9﹣3.【题目点拨】此题主要考查函数与几何综合,解题的关键是熟知等腰三角形的性质、平行四边形、菱形及正方形的性质,利用三角函数、勾股定理及相似三角形的性质进行求解.15、1【解题分析】由△ABC与△DEF的相似,它们的相似比是2:3,根据相似三角形的面积比等于相似比的平方,即可得它们的面积比是4:1,又由△ABC的面积为4,即可求得△DEF的面积.【题目详解】∵△ABC与△DEF的相似,它们的相似比是2:3,
∴它们的面积比是4:1,
∵△ABC的面积为4,
∴△DEF的面积为:4×=1.
故答案为:1.【题目点拨】本题考查的知识点是相似三角形的性质,解题关键是掌握相似三角形的面积比等于相似比的平方定理.16、【分析】(1)以点O为原点,OC所在直线为y轴,垂直于OC的直线为x轴建立平面直角坐标系,利用待定系数法确定二次函数的解析式后延长BD到M使MD=BD,连接AM交OC于点P,则点P即为所求;利用待定系数法确定直线M'A'的解析式,从而求得点P′的坐标,从而求得O、P之间的距离;(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于点,则点即为所求.【题目详解】(1)如图建立平面直角坐标系(以点为原点,所在直线为轴,垂直于的直线为轴),延长到使,连接交于点,则点即为所求.设抛物线的函数解析式为,由题意知旋转后点的坐标为.带入解析式得抛物线的函数解析式为:,当时,,点的坐标为,点的坐标为代入,求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于点,则点即为所求.点的坐标为,点坐标为代入,,的坐标求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.【题目点拨】本题考查了二次函数的应用,解题的关键是从实际问题中整理出二次函数模型,利用二次函数的知识解决生活中的实际问题.17、【分析】首先判断出是中心对称图形的有多少张,再利用概率公式可得答案.【题目详解】共有9张卡片,是中心对称图形车标卡片是第2张,则抽到的是中心对称图形车标卡片的概率是,故答案为:.【题目点拨】此题主要考查了概率公式和中心对称图形,关键是掌握随机事件A的概率P(A)=.18、【分析】找出这三个特殊角的三角函数值中最小的即可.【题目详解】,,∵∴故答案为:.【题目点拨】本题考查了特殊角的三角函数值以及最小值等知识,解题的关键是熟特殊角的三角函数值.三、解答题(共78分)19、,1【解题分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值化简代入计算可得.【题目详解】原式,当时,原式.【题目点拨】此题考查分式的化简求值,特殊角的三角函数值,解题关键在于掌握运算法则20、(1)见解析;(3)直线DE是⊙O的切线,证明见解析;(3)3.3或4.3【分析】(1)依据题意,利用尺规作图技巧补全图形即可;(3)由题意连结OD,交BC于F,判断并证明OD⊥DE于D以此证明直线DE与⊙O的位置关系;(3)由题意根据相关条件证明平行四边形CFDE是矩形,从而进行分析求解.【题目详解】(1)如图.(3)判断:直线DE是⊙O的切线.证明:连结OD,交BC于F.∵AD平分∠BAC,∴∠BAD=∠CAD.∴.∴OD⊥BC于F.∵DE∥BC,∴OD⊥DE于D.∴直线DE是⊙O的切线.(3)∵AB是⊙O的直径,∴∠ACB=90°.∵AB=10,BC=8,∴AC=1.∵∠BOF=∠ACB=90°,∴OD∥AC.∵O是AB中点,∴OF==3.∵OD==5,∴DF=3.∵DE∥BC,OD∥AC,∴四边形CFDE是平行四边形.∵∠ODE=90°,∴平行四边形CFDE是矩形.∴CE=DF=3.【题目点拨】本题结合圆考查圆的尺规作图以及圆的切线定义和矩形的证明,分别掌握其方法定义进行分析.21、,-.【分析】先求出程x2+x﹣2=0的解,再将所给分式化简,然后把使分式有意义的解代入计算即可.【题目详解】解:∴x2+x﹣2=0,∴(x-1)(x+2)=0,∴x1=1,x2=-2,原式=•=,∵a是方程x2+x﹣2=0的解,∴a=1(没有意义舍去)或a=﹣2,则原式=﹣.【题目点拨】本题考查了分式的化简求值,一元二次方程的解法,熟练掌握分式的运算法则和一元二次方程的解法是解答本题的关键.22、(1)60°;(2).【分析】(1)根据圆内接四边形的性质即可得到结论;(2)连接OB,OD,作OH⊥BD于H根据已知条件得到∠BOD=120°;求得∠OBD=∠ODB=30°,解直角三角形即可得到结论.【题目详解】(1)∵四边形ABCD为⊙O的内接四边形,∴∠C+∠A=180°,∵∠C=2∠A,∴∠A=60°;(2)连接OB,OD,作OH⊥BD于H∵∠A=60°,∠BOD=2∠A,∴∠BOD=120°;又∵OB=OD,∴∠OBD=∠ODB=30°,∵OH⊥BD于H,在Rt△DOH中,,即,∴,∵OH⊥BD于H,∴.【题目点拨】此题考查圆的性质,垂径定理,勾股定理,圆周角定理,在圆中求弦长、半径、弦心距三个量中的一个时,通常利用勾股定理与垂径定理进行计算.23、(1)1,1,0(2)作图见解析(3)必过点.(答案不唯一)(4)【分析】(1)根据待定系数法求出的值,再代入和,即可求出m、n的值;(2)根据描点法画出函数的图象即可;(3)根据(2)中函数的图象写出其中一个性质即可;(4)利用图象法,可得函数与有三个不同的交点,根据二次函数的性质求解即可.【题目详解】(1)将代入中解得∴当时,当时,;(2)如图所示;(3)必过点;(4)设直线,由(1)得∵方程有三个不同的解∴函数与有三个不同的交点根据图象即可知,当方程有三个不同的解时,故.【题目点拨】本题考查了函数的图象问题,掌握待定系数法、描点法、图象法、二次函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玉溪师范学院《外国民族音乐》2023-2024学年第一学期期末试卷
- 玉溪师范学院《思想政治学科教学论》2021-2022学年第一学期期末试卷
- 玉溪师范学院《色彩人像》2022-2023学年第一学期期末试卷
- 玉溪师范学院《空间构成基础》2022-2023学年第一学期期末试卷
- 动力测试仪器账务处理实例-记账实操
- 五年级下册音乐课件下载
- 广州版五年级英语下册教案
- 2024年航空制造和材料专用设备项目评价分析报告
- 2024届河北省张家口市尚义一中高三一模数学试题试卷
- 测绘及勘察合同
- 反击式破碎机说明书
- 共青团中山市12355青少年综合服务平台建设方案
- 索道年度自检报告
- 二年级数学小故事(课堂PPT)
- 项目安全管理工作流程图
- 国家开放大学《生产与运作管理》形考作业1-4参考答案
- 中国压力容器标准与美国ASME规范的比较(DOC 8页)
- 起重机轨道修理施工方案(共18页)
- 交警大队协勤人员管理制度-规章制度文书
- 内部控制评价的内容内部控制评价制度
- 保密协议(中英文模板)
评论
0/150
提交评论