2024届安徽省枞阳县联考九年级数学第一学期期末达标检测试题含解析_第1页
2024届安徽省枞阳县联考九年级数学第一学期期末达标检测试题含解析_第2页
2024届安徽省枞阳县联考九年级数学第一学期期末达标检测试题含解析_第3页
2024届安徽省枞阳县联考九年级数学第一学期期末达标检测试题含解析_第4页
2024届安徽省枞阳县联考九年级数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省枞阳县联考九年级数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④4a﹣2b+c<0;⑤c﹣a>1,其中所有正确结论的序号是()A.①② B.①③④ C.①②③⑤ D.①②③④⑤2.如图为二次函数的图象,在下列说法中:①;②方程的根是③;④当时,随的增大而增大;⑤;⑥,正确的说法有()A. B. C. D.3.若反比例函数y=(k≠0)的图象经过(2,3),则k的值为()A.5 B.﹣5 C.6 D.﹣64.如图,在一个周长为10m的长方形窗户上钉上一块宽为1m的长方形遮阳布,使透光部分正好是一个正方形,则钉好后透光部分的面积为()A.9m2 B.25m2 C.16m2 D.4m25.一元二次方程有一根为零,则的值为()A. B. C.或 D.或6.在下列几何体中,主视图、左视图和俯视图形状都相同的是()A. B. C. D.7.关于x的方程3x2﹣2x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定8.如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()A.πcm B.2πcm C.3πcm D.5πcm9.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.某女模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.1.为尽可能达到好的效果,她应穿的高跟鞋的高度大约为()A.4cm B.6cm C.8cm D.10cm10.如图,将绕点按逆时针方向旋转后得到,若,则的度数为()A. B. C. D.二、填空题(每小题3分,共24分)11.在直角坐标平面内,抛物线在对称轴的左侧部分是______的.12.为了估计抛掷同一枚啤酒瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计发现共抛掷次啤酒瓶盖,凸面向上的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向上的概率约为_______________________(结果精确到)13.已知函数是反比例函数,则=________.14.如图,,与交于点,已知,,,那么线段的长为__________.15.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t﹣6t2,则小球运动到的最大高度为________米;16.cos30°+sin45°+tan60°=_____.17.若一个反比例函数的图像经过点和,则这个反比例函数的表达式为__________.18.如图,正方形ABCD的边长为,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则△DMN的面积=.三、解答题(共66分)19.(10分)如图,在中,,.,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点,.(1)求的长.(2)若点是线段的中点,求的值.20.(6分)如图,是我市某大楼的高,在地面上点处测得楼顶的仰角为,沿方向前进米到达点,测得.现打算从大楼顶端点悬挂一幅庆祝建国周年的大型标语,若标语底端距地面,请你计算标语的长度应为多少?21.(6分)如图,已知l1∥l2,Rt△ABC的两个顶点A,B分别在直线l1,l2上,,若l2平分∠ABC,交AC于点D,∠1=26°,求∠2的度数.22.(8分)如图,在平面直角坐标系中,直线分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE,动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长;(2)设点Q2为(m,n),当tan∠EOF时,求点Q2的坐标;(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.23.(8分)如图,在正方形网格中,每个小正方形的边长均为1个单位.(1)△ABC绕着点C顺时针旋转90°,画出旋转后对应的△A1B1C1;(2)求△ABC旋转到△A1B1C时,的长.24.(8分)在平面直角坐标系中(如图),已知抛物线经过点,与轴交于点,,抛物线的顶点为点,对称轴与轴交于点.(1)求抛物线的表达式及点的坐标;(2)点是轴正半轴上的一点,如果,求点的坐标;(3)在(2)的条件下,点是位于轴左侧抛物线上的一点,如果是以为直角边的直角三角形,求点的坐标.25.(10分)已知抛物线y=x2+(1﹣2a)x﹣2a(a是常数).(1)证明:该抛物线与x轴总有交点;(2)设该抛物线与x轴的一个交点为A(m,0),若2<m≤5,求a的取值范围;(3)在(2)的条件下,若a为整数,将抛物线在x轴下方的部分沿x轴向上翻折,其余部分保持不变,得到一个新图象G,请你结合新图象,探究直线y=kx+1(k为常数)与新图象G公共点个数的情况.26.(10分)已知抛物线经过点(1,0),(0,3).(1)求该抛物线的函数表达式;(2)将抛物线平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据二次函数的性质逐项分析可得解.【题目详解】解:由函数图象可得各系数的关系:a<0,b<0,c>0,则①当x=1时,y=a+b+c<0,正确;②当x=-1时,y=a-b+c>1,正确;③abc>0,正确;④对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=1>0,错误;⑤对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c>1,代入b=2a,则c-a>1,正确.故所有正确结论的序号是①②③⑤.故选C2、D【分析】根据抛物线开口向上得出a>1,根据抛物线和y轴的交点在y轴的负半轴上得出c<1,根据图象与x轴的交点坐标得出方程ax2+bx+c=1的根,把x=1代入y=ax2+bx+c求出a+b+c<1,根据抛物线的对称轴和图象得出当x>1时,y随x的增大而增大,2a=-b,根据图象和x轴有两个交点得出b2-4ac>1.【题目详解】∵抛物线开口向上,∴a>1,∵抛物线和y轴的交点在y轴的负半轴上,∴c<1,∴ac<1,∴①正确;∵图象与x轴的交点坐标是(-1,1),(3,1),∴方程ax2+bx+c=1的根是x1=-1,x2=3,∴②正确;把x=1代入y=ax2+bx+c得:a+b+c<1,∴③错误;根据图象可知:当x>1时,y随x的增大而增大,∴④正确;∵-=1,∴2a=-b,∴2a+b=1,不是2a-b=1,∴⑤错误;∵图象和x轴有两个交点,∴b2-4ac>1,∴⑥正确;正确的说法有:①②④⑥.故答案为:D.【题目点拨】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力,本题是一道比较典型的题目,具有一定的代表性.3、C【分析】反比例函数图象上的点(x,y)的横纵坐标的积是定值k,依据xy=k即可得出结论.【题目详解】解:∵反比例函数y=(k≠0)的图象经过(2,3),∴k=2×3=6,故选:C.【题目点拨】本题主要考查了反比例函数图象上点的坐标特征,熟练掌握是解题的关键.4、D【解题分析】根据矩形的周长=(长+宽)×1,正方形的面积=边长×边长,列出方程求解即可.【题目详解】解:若设正方形的边长为am,

则有1a+1(a+1)=10,

解得a=1,故正方形的面积为4m1,即透光面积为4m1.

故选D.【题目点拨】此题考查了一元一次方程的应用,主要考查了长方形的周长及正方形面积的求法,属于基础题,难度一般.5、B【分析】把代入一元二次方程,求出的值,然后结合一元二次方程的定义,即可得到答案.【题目详解】解:∵一元二次方程有一根为零,∴把代入一元二次方程,则,解得:,∵,∴,∴;故选:B.【题目点拨】本题考查了一元二次方程的解,以及一元二次方程的定义,解题的关键是熟练掌握解一元二次方程的方法,正确求出的值.6、C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依次找到主视图、左视图和俯视图形状都相同的图形即可.【题目详解】解:A、圆台的主视图和左视图相同,都是梯形,俯视图是圆环,故选项不符合题意;B、三棱柱的主视图和左视图、俯视图都不相同,故选项不符合题意;C、球的三视图都是大小相同的圆,故选项符合题意.D、圆锥的三视图分别为等腰三角形,等腰三角形,含圆心的圆,故选项不符合题意;故选C.【题目点拨】本题考查了三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.7、C【解题分析】试题分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.解:∵a=3,b=﹣2,c=1,∴△=b2﹣4ac=4﹣12=﹣8<0,∴关于x的方程3x2﹣2x+1=0没有实数根.故选:C.考点:根的判别式.8、C【解题分析】试题分析:根据定滑轮的性质得到重物上升的即为转过的弧长,利用弧长公式得:l==3πcm,则重物上升了3πcm,故选C.考点:旋转的性质.9、C【分析】根据比例关系即可求解.【题目详解】∵模特身高165cm,下半身长x(cm)与身高l(cm)的比值是0.1,∴=0.1,解得:x=99,设需要穿的高跟鞋是ycm,则根据黄金分割的定义得:=0.612,解得:y≈2.故选:C.【题目点拨】此题主要考查比例的性质,解题的关键是熟知比例关系的定义.10、A【分析】根据旋转的性质即可得到结论.【题目详解】解:∵将绕点按逆时针方向旋转后得到,

∴,

∴,

故选:A.【题目点拨】本题考查了三角形内角和定理,旋转的性质的应用,能求出∠ACD的度数是解此题的关键.二、填空题(每小题3分,共24分)11、下降【分析】由抛物线解析式可求得其开口方向,再结合二次函数的增减性则可求得答案.【题目详解】解:∵在y=(x-1)2-3中,a=1>0,

∴抛物线开口向上,

∴在对称轴左侧部分y随x的增大而减小,即图象是下降的,

故答案为:下降.【题目点拨】本题主要考查二次函数的性质,利用二次函数的解析式求得抛物线的开口方向是解题的关键.12、【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【题目详解】∵抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为10次,∴抛掷这枚啤酒瓶盖出现“凸面向上”的概率约为=0.1,故答案为:0.1.【题目点拨】本题主要考查概率的意义、等可能事件的概率,大量重复试验事件发生的频率约等于概率.13、1【分析】根据反比例函数的定义可得|m|-2=-1,m+1≠0,求出m的值即可得答案.【题目详解】∵函数是反比例函数,∴|m|-2=-1,m+1≠0,解得:m=1.故答案为:1【题目点拨】考查反比例函数的定义;反比例函数解析式的一般形式y=(k≠0),也可转化为y=kx-1(k≠0)的形式,特别注意不要忽略k≠0这个条件.14、【分析】根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到OA:OD=AB:CD,然后利用比例性质计算OA的长.【题目详解】∵AB∥CD,∴OA:OD=AB:CD,即OA:2=4:3,∴OA=.故答案为.【题目点拨】本题考查了平行线分线段成比例:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.15、6【分析】现将函数解析式配方得,即可得到答案.【题目详解】,∴当t=1时,h有最大值6.故答案为:6.【题目点拨】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.16、【分析】根据特殊角的三角函数值、二次根式的化简进行计算,在计算时,需要针对每个考点分别进行计算,然后求得计算结果.【题目详解】cos30°+sin45°+tan60°===故填:.【题目点拨】解决此类题目的关键是熟记特殊角的三角函数值.17、【分析】这个反比例函数的表达式为,将A、B两点坐标代入,列出方程即可求出k的值,从而求出反比例函数的表达式.【题目详解】解:设这个反比例函数的表达式为将点和代入,得化简,得解得:(反比例函数与坐标轴无交点,故舍去)解得:∴这个反比例函数的表达式为故答案为:.【题目点拨】此题考查的是求反比例函数的表达式,掌握待定系数法是解决此题的关键.18、1.【分析】首先连接DF,由四边形ABCD是正方形,可得△BFN∽△DAN,又由E,F分别是AB,BC的中点,可得=2,△ADE≌△BAF(SAS),然后根据相似三角形的性质与勾股定理,可求得AN,MN的长,即可得MN:AF的值,再利用同高三角形的面积关系,求得△DMN的面积.【题目详解】连接DF,

∵四边形ABCD是正方形,

∴AD∥BC,AD=BC=,

∴△BFN∽△DAN,

∴,

∵F是BC的中点,

∴,

∴AN=2NF,

∴,

在Rt△ABF中,

∴,

∵E,F分别是AB,BC的中点,AD=AB=BC,

∴,

∵∠DAE=∠ABF=90°,

在△ADE与△BAF中,

∴△ADE≌△BAF(SAS),

∴∠AED=∠AFB,

∴∠AME=110°-∠BAF-∠AED=110°-∠BAF-∠AFB=90°.

∴,

∴,

∴.

又,

∴.

故答案为:1.三、解答题(共66分)19、(1);(2).【解题分析】(1)求出,在Rt△ADC中,由三角函数得出;(2)由三角函数得出BC=AC•tan60°=,得出,证明△DFM≌△AGM(ASA),得出DF=AG,由平行线分线段成比例定理得出,即可得出答案.【题目详解】解:(1)∵平分,,∴,在中,,(2)∵∠C=90°,AC=6,∠BAC=60°,∴,∴,∵DE∥AC,∠DMF和∠AMG是对顶角,∴∠FDM=∠GAM,∠DMF=∠AMG,∵点M是线段AD的中点,∴,∵,∴,∴.由DE∥AC,得,∴,∴;【题目点拨】本题主要考查了全等三角形的性质与判定,特殊角的三角函数值,掌握全等三角形的性质与判定,特殊角的三角函数值是解题的关键.20、标语的长度应为米.【解题分析】首先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形,即△ABC和△ADC.根据已知角的正切函数,可求得BC与AC、CD与AC之间的关系式,利用公共边列方程求AC后,AE即可解答.【题目详解】解:在Rt△ABC中,∠ACB=90°,∠ABC=45°,∴Rt△ABC是等腰直角三角形,AC=BC.在Rt△ADC中,∠ACD=90°,tan∠ADC==,∴DC=AC,∵BC-DC=BD,即AC-AC=18,∴AC=45,则AE=AC-EC=45-15=1.答:标语AE的长度应为1米.【题目点拨】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21、38°【解题分析】试题分析:根据平行线的性质先求得∠ABD=26°,再根据角平分线的定义求得∠ABC=52°,再根据直角三角形两锐角互余即可得.试题解析:∵l1∥l2,∠1=26°,∴∠ABD=∠1=26°,又∵l2平分∠ABC,∴∠ABC=2∠ABD=52°,∵∠C=90°,∴Rt△ABC中,∠2=90°﹣∠ABC=38°.22、(1)(8,0),;(2)(6,1);(3)①,②的长为或.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,即可得到OE;(2)如图,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由和,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=,根据Q3(−4,6),Q2(6,1),可得t=4时,s=,利用待定系数法可得s关于t的函数表达式;②分三种情况:(i)当PQ∥OE时,根据,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,根据tan∠HPQ=tan∠CDN=,列方程为2t−2=(7−t),可得t的值.(iii)由图形可知PQ不可能与EF平行.【题目详解】解:(1)令,则,∴,∴为.∵为,在中,.又∵为中点,∴.(2)如图,作于点,则,∴,∴,∴,∴.∵,∴,由勾股定理得,∴,∴.∵,∴,∴为.(3)①∵动点同时作匀速直线运动,∴关于成一次函数关系,设,将和代入得,解得,∴.②(ⅰ)当时,(如图),,作轴于点,则.∵,又∵,∴,∴,∴,∴.(ⅱ)当时(如图),过点作于点,过点作于点,由得.∵,∴,∴,∴.∵,∴,∴,∴.(ⅲ)由图形可知不可能与平行.综上所述,当与的一边平行时,的长为或.【题目点拨】此题是一次函数的综合题,主要考查了:用待定系数法求一次函数关系式,三角形相似的性质和判定,三角函数的定义,勾股定理,正方形的性质等知识,并注意运用分类讨论和数形结合的思想解决问题.23、(1)见解析;(2)【分析】(1)依据△ABC绕着点C顺时针旋转90°,即可画出旋转后对应的△A1B1C1;(2)依据弧长计算公式,即可得到弧BB1的长.【题目详解】解:(1)如图所示,△A1B1C1即为所求;(2)弧BB1的长为:=.【题目点拨】本题主要考查作图-旋转变换,以及弧长公式,解题的关键是熟练掌握旋转变换的性质及弧长公式.24、(1),;(2);(3)或【分析】(1)将点A、B代入抛物线,即可求出抛物线解析式,再化为顶点式即可;

(2)如图1,连接AB,交对称轴于点N,则N(-,-2),利用相等角的正切值相等即可求出EH的长,OE的长,可写出点E的坐标;

(3)分∠EAP=90°和∠AEP=90°两种情况讨论,通过相似的性质,用含t的代数式表示出点P的坐标,可分别求出点P的坐标.【题目详解】解:(1)(1)将点A(-3,-2)、B(0,-2)代入抛物线,

得,,

解得,a=,c=-2,

∴y=x2+4x-2

=(x+)2-5,

∴抛物线解析式为y=x2+4x-2,顶点C的坐标为(-,-5);(2)如图1,连接AB,交对称轴于点N,则N(-,-2),,则,过作,,则,∵OH=3,∴OE=1,∴(3)①如图2,当∠EAP=90°时,

∵∠HEA+∠HAE=90,∠HAE+∠MAP=90°,

∴∠HEA=∠MAP,

又∠AHE=∠PMA=90°,,则,设,则将代入得(舍),,∴②如图3,当∠AEP=90°时,∵∠EAG+∠AEG=90°,∠AEG+∠PEN=90°,

∴∠AEG=∠EPN,

又∵∠N=∠G=90°,∴,则设,则将代入得,(舍),∴综上所述:,【题目点拨】此题考查了待定系数法求解析式,锐角三角函数,直角三角形的存在性等,解题关键是能够作出适当的辅助线构造相似三角形,并注意分类讨论思想的运用.25、(1)见解析;(2)1<a≤;(3)新图象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论