文本1周期信号_第1页
文本1周期信号_第2页
文本1周期信号_第3页
文本1周期信号_第4页
文本1周期信号_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PartI

PeriodicSignals

Time-descriptions

Thefactthatthegreatmajorityoffunctionswhichmayusefullybeconsideredassignalsarefunctionsoftimelendsjustificationtothetreatmentofsignaltheoryintermsoftimeandoffrequency.AperiodicsignalwillthereforebeconsideredtobeonewhichrepeatsitselfexactlyeveryTseconds,whereTiscalledtheperiodofthesignalwaveform;thetheoreticaltreatmentofperiodicwaveformsassumesthatthiactrepetitionitendedthroughoutalltime,bothpastandfuture.Inpractice,ofcourse,signalsdonotrepeatthemselvesindefiniy.Nevertheless,awaveformsuchastheoutputvoltageofamainsrectifierpriortosmoothingdoesrepeatitselfverymanytimes,anditsysisasastrictlyperiodicsignalyieldsvaluableresults.Inothercases,suchastheelectrocardiogram,thewaveformisquasi-periodicandmayusefullybetreatedastrulyperiodicforsomepurpose.Itisworthnotingthatatrulyrepetitivesignalisofverylittleinterestinacommunicationchannel,senofurtherinformationisconveyedafterthefirstcycleofthewaveformhasbeenreceived.Oneofthemainreasonsfordiscussingperiodicsignalsisthlearunderstandingoftheirysisisagreathelpwhendealingwithaperiodicandrandomones.

Acompletetime- descriptionofsuchasignalinvolvesspecifyingitsvaluepreciselyateveryinstantoftime.Insomecasesthismaybedoneverysimplyusingmathematicalnotation.Fortunay,itisinmanycasesusefultodescribeonlycertainaspectsofasignalwaveform,ortorepresentitbyamathematicalformulawhichisonlyapproximate.Thefollowingaspectsmightberelevparticularcases:

theaveragevalueofthesignal,

thepeakvaluereachedbythesignal,

theproportionofthetotaltimespentbetweenvalueaandb,

theperiodofthesignal.

Ifitisdesiredtoapproximatethewaveformbyamathematicalexpression,suchtechniquesasapolynomialexpansion,aTaylorseries,oraFourierseriesmaybeused.Apolynomialofordernhavingtheform

ftaatat2at3 (1-1)

0 1 2 3

maybeusedtofittheactualcurveat(n+1)arbitrarypoints.Theaccuracyoffitwillgenerallyimproveasthenumberofpolynomialterms reases.Itshouldalsobenotedthattheerrorbetween

thetruesignalwaveformandthepolynomialwillnormally everylargeawayfromtheregionofthefittedpoints,andthatthepolynomialitselfcannotbeperiodic.Whereasapolynomialapproximationfitstheactualwaveformatanumberofarbitrarypoints,thealternativeTaylorseriesapproximationprovidesagoodfittoasmoothcontinuouswaveforminthevicinityofoneselectedpoint.ThecoefficientsoftheTaylorseriesarechosentomaketheseriesanditsderivativesagreewiththeactualwaveformatthispoint.Thenumberoftermsintheseriesdeterminestowhatorderofderivativethisagreementwillextend,andhencetheaccuracywithwhichseriesandactual

waveformagreeintheregionofthepointchosen.ThegeneralformoftheTaylorseriesfor

approximatingafunction

fata

dfa

dt

ta2

2!

d2fa

dt2

tan

n!

dnfa

dtn

ft

ftintheregionofthepointtaisgivenby

(1-2)

Generallyspeaking,thefittotheactualwaveformisgoodintheregionofthepointchosen,butrapidlydeterioratestoeitherside.ThepolynomialandTaylorseriesdescriptionsofasignalwaveformarethereforeonlytobe mendedwhenoneisconcernedtoachieveaccuracyoveralimitedregionofthewaveform.Theaccuracyusuallydecreasesrapidlyawayfromthisregion,althoughitmaybeimprovedbyludingadditionalterms(solongastlieswithintheregionofconvergenceoftheseries).Theapproximationsprovidedbysuchmethodsareneverperiodicinformandcannotthereforebeconsideredidealforthedescriptionofrepetitivesignals.

BycontrasttheFourierseriesapproximationiswellsuitedtotherepresentationofasignalwaveformoveranextendedinterval.Whenthesignalisperiodic,theaccuracyoftheFourierseriesdescriptionismaintainedforalltime,sethesignalisrepresentedasthesumofanumberofsinusoidalfunctionswhicharethemselvesperiodic.BeforeexaminingindetailtheFourierseriesmethodofrepresentingasignal,thebackgroundtowhatisknownasthe‘frequency- ’approachwillbeintroduced.

Frequency-descriptions

Thebasicconceptionoffrequency- ysisisthatawaveformofanycomplexitymaybeconsideredasthesumofanumberofsinusoidalwaveformsofsuitableamplitude,periodicity,and

relativephase.Acontinuoussinusoidalfunctionsintisthoughtofasa‘singlefrequency’

waveoffrequencyradians/second,andthefrequency- descriptionofasignalinvolvesitsbreakdownintoanumberofsuchbasicfunctions.ThisisthemethodofFourier ysis.

Thereareanumberofreasonswhysignalrepresentationintermsofasetofcomponentsinusoidalwavesoccupiessuchacentralroleinsignalysis.Thesuitabilityofasetofperiodicfunctionsforapproximatingasignalwaveformoveranextendedintervalhasalreadybeenmentioned,anditwillbeshownlaterthattheuseofsuchtechniquescausestheerrorbetweentheactualsignalanditsapproximationtobeminimizedinacertainimportanse.Afurtherreason

whysinusoidalfunctionsaresoimportsignalysisisthattheyoccurwidelyinthephysicalworldandareverysusceptibletomathematicaltreatment;alargeandextremelyimportantclassofelectricalandmechanicalsystems,knownas‘linearsystems’,respondssinusoidallywhendrivenbyasinusoidaldisturbingfunctionofanyfrequency.Allthesemanifestationsofsinusoidalfunctioninthephysicalworldsuggestthatsignalysisinsinusoidaltermswillsimplifytheproblemofrelatingasignaltounderlyingphysicalcauses,ortothephysicalpropertiesofasystemordevicethroughwhichithaspassed.Finally,sinusoidalfunctionsformasetofwhatarecalled‘orthogonalfunction’,theratherspecialpropertiesandadvantageofwhichwillnowbediscussed.

Orthogonalfunctions

Vectorsandsignals

Adiscussionoforthogonalfunctionsandoftheirvalueforthedescriptionofsignalsmaybeconvenientlyintroducedbyconsideringtheogybetweensignalsandvectors.Avectorisspecifiedbothbyitsmagnitudeanddirection,familiarexamplesbeingandvelocity.Suppose

wehavetwovectorsV1andV2;geometrically,wedefhecomponentofvectorV1along

vectorV2byconstructingtheperpendicularfrom ofV1

V1C12V2Ve

ontoV2.Wethenhave

(1-3)

wherevectorVeistheerrorintheapproximation.Clearly,thiserrorvectorisofminimumlengthwhenitisdrawnperpendiculartothedirectionofV2.ThuswesaythatthecomponentofvectorV1alongvectorV2isgivenbyC12V2,whereC12ischosensuchastomaketheerrorvectorassmallaspossible.Afamiliarcaseofanorthogonalvectorsystemistheuseofthreemutually

perpendicularaxeso-ordinategeometry.

Thesebasicideasaboutthecomparisonofvectorsmaybeextendedtosignals.Supposewewishtoapproximateasignalf1tbyanothersignalorfunctionf2toveracertainintervalt1tt2;inotherwords

f1tC12f2t fort1tt2

WewishtochooseC12toachievethebestapproximation.Ifwedefheerrorfunction

fetf1tC12f2t (1-4)itmightappearatfirstsightthatweshouldchooseC12soastominimizetheaveragevalueoffetoverthechoseninterval.Thedisadvantageofsuchanerrorcriterionisthatlargepositiveand

negativeerrorsoccurringatdifferentinstantswouldtendtocanceleachotherout.Thisdifficultyisavoidedifwechoosetominimizetheaveragesquared-error,ratherthantheerroritself(thisisequivalenttominimizingthesquarerootofthemean-squarederror,or’rm.s’error).Denotingthe

e

averageoff2tby,wehave

1 t2f2tdt 1 t2ftCft2dt

(1-5)

t2t1t1 e

t2t1t1

1 122

DifferentiatingwithrespecttoC12andputtingtheresultingexpressionequaltozerogivesthevalueofC12forwhichisaminimum.Thus

d 1 t2 ftCft2dt0

122 1

1

dC ttt

1 122

Expandingthebracketandchangingtheorderofintegrationanddifferentiatinggives

C t2ftftdt t2f2tdt

12t 1 2 t 2

1 1

(1-6)

Signaldescriptionbysetsoforthogonalfunctions

Supposethatwehaveapproximatedasignal f1toveracertainintervalbythefunction f2tsothatthemeansquareerrorisminimized,butthatwenowwishtoimprovetheapproximation.Itwillbedemonstratedthataveryattractiveapproachistoexpressthesignalintermsofasetof

functions f2t,f3t,f4t,etc.,whicharemutuallyorthogonal.Supposetheinitial

approximationis

f1tC12f2t (1-7)

andthattheerrorisfurtherreducedbyputting

f1tC12f2tC13f3t (1-8)

where f2tandf3tareorthogonalovertheintervalofinterest.NowthatwehaveorporatedtheadditionaltermC13f3t,itisinterestingtofindwhatthenewvalueof

C12mustbeinorderthatthemeansquareerrorisagainminimized.Wenowhave

fetf1tC12f2tC13f3t (1-9)

andthemeansquareerrorintheintervalt1tt2

1

1 t2

istherefore

2

t2t1

tf1tC12f2tC13f3t.dt (1-10)

DifferentiatingpartiallywithrespecttoC12tofindthevalueofC12forwhichthemeansquareerrorisagainminimized,andchangingtheorderofdifferentiationandintegration,wehaveagain

C t2ftftdt t2f2tdt

12t 1 2 t 2

1 1

(1-11)

Inotherwords,thedecisiontoimprovetheapproximationby orporatinganadditionaltermin

doesnotrequireustomodifythecoefficient,providedthatf3tisorthogonaltof2tinthechosentimeinterval1.Bypreciselysimilarargumentswecouldshowthatthevalueof C13would

beunchangedifthesignalweretobeapproximatedbyf3talone.

Thisimportantresultmaybeextendedtocovertherepresentationofasignalintermsofawholesetoforthogonalfunctions.Thevalueofanycoefficientdoesnotdependuponhowmanyfunctionsfromthecompletesetareusedintheapproximation,andisthusunalteredwhenfurthertermsareluded.Theuseofasetoforthogonalfunctionsforsignaldescriptionisogoustotheuseofthreemutuallyperpendicular(thatis,orthogonal)axesforthedescriptionofavectorinthree-dimensionalspace,andgivesrisetothenotionofa‘signalspace’.Accuratesignalrepresentationwilloftenrequiretheuseofmanymorethanthreeorthogonalfunctions,sothatwe

mustthinkofasignalwithinsomeintervalmultidimensionalspace.

t1tt2asbeingrepresentedbyapointina

Tosummarize,thereareanumberofsetsoforthogonalfunctionsavailablesuchastheso-calledLegendrepolynomialsandWalshfunctionsfortheapproximatedescriptionofsignalwaveform,ofwhichthesinusoidalsetisthemostwidelyused.Setsinvolvingpolynomialsintarenotbytheirverynatureperiodic,butmaysensiblybeusedtodescribeonecycle(orless)ofaperiodicwaveform;outsidethechoseninterval,errorsbetweenthetruesignalanditsapproximationwillnormallyreaserapidly.Adescriptionofonecycleofaperiodicsignalintermsofsinusoidialfunctionswill,however,beequallyvalidforalltimebecauseoftheperiodicnatureofeverymemberoftheorthogonal.

TheFourierseries

ThebasisoftheFourierseriesisth omplexperiodicwaveformmaybe ysedintoanumberofharmonicallyrelatedsinusoidalwaveswhichconstituteanorthogonalset.Ifwehaveaperiodic

signalftwithaperiodequaltoT,thenftmayberepresentedbytheseries

ftA0Ancosn1tBnsinn1t (1-12)

n1 n1

where12T.Thusftisconsideredtobemadeupbytheadditionofasteadylevel(A0)toanumberofsinusoidalandcosinusoidalwavesofdifferentfrequencies.Thelowestofthese

frequenciesis1(radianspersecond)andiscalledthe‘fundamental’;wavesofthisfrequencyhaveaperiodequaltothatofthesignal.Frequency21iscalledthe‘secondharmonic’,31isthe‘thirdharmonic’,andsoon.Certainrestrictions,knownastheDirichletconditions,mustbe

ceduponftfortheaboveseriestobevalid.Theintegralftdtoveracompleteperiodmustbefinite,andmaynothavemorethanafinitenumberofdiscontinuitiesinanyfinite

interval.Fortunay,theseconditionsdonotexcludeanysignalwaveformofpracticalinterest.

Evaluationofthecoefficients

1

WenowturntothequestionofevaluatingthecoefficientsA0,AnandBn.Usingtheminimumsquareerrorcriteriondescribedinforegoingtext,andwritingforthesakeofconvenience,wehave

A0

2

fxdx,

A1

fxcosnx.dx,

B1

fxsinnx.dx(1-13)

n n

Althoughinthemajorityofcasesitisconvenientfortheintervalofintegrationtobesymmetricalabouttheorigin,anyintervalequalinlengthtooneperiodofthesignalwaveformmaybechosen.

Manywaveformofpracticalinterestareeitherevenoroddfunctionsoftime.If ftiseventhenbydefinitionftft,whereasifitisoddftft.Ifftisevenandwemultiplyitbytheoddfunctionsinn1ttheresultisalsoodd.ThustheintegrandforeveryBnisodd.Nowwhenanoddfunctionisintegratedoveranintervalsymmetricalaboutt0,theresultisalwayszero.HencealltheBcoefficientsarezeroandweareleftwithaseriescontaining

onlycosines.Bysimilararguments,ifftisoddtheAcoefficientsmustbezeroandweareleftwithasineseries.Itisindeedintuitivelyclearthatanevenfunctioncanonlybebuiltupfroma

numberofotherfunctionswhicharethemselveseven,andviceversa.

WehavealreadyseenhowtheFourierseriesissimplifiedinthecaseofanevenoroddfunction,bylosingeitheritssineoritscoserms.Adifferenttypeofsimplificationoccursinthecaseofawaveformpossessingwhatisknowas‘half-wavesymmetry’.Inmathematicalterms,half-wavesymmetryexistswhen

ftftT2 (1-14)

InotherwordsanytwovaluesofthewaveformseparatedbyT2willbeequalinmagnitudeandoppositeinsign.Generalizing,onlyoddharmonicsexhibithalf-wavesymmetry,andthereforeawaveformofanycomplexitywhichhassuchsymmetrycannotcontainevenharmoniccomponents.Conversely,awaveformknowntocontainanysecond,,orotherharmoniccomponentscannotdisyhalf-wavesymmetry.

Usually,wehavealwaysintegratedoveracompletecycletoderivethecoefficients.Howeverin

thecaseofanoddorevenfunctionitissufficient,andoftensimpler,tointegrateoveronlyonehalfofthecycleandtomultiplytheresultby2.Furthermoreifthewaveisnotonlyevenoroddbutalsodisyshalf-wavesymmetry,itisenoughtointegrateoveronequarterofacycleandmultiplyby4.Thesecloserlimitsareadequateinsuchcasesthefunctionthatisbeingintegratedisrepetitive,repeatinicewithinoneperiodwhenthefunctioniseitherevenorodd,andfourtimeswithinoneperiodwhenitalsoexhibitshalf-wavesymmetry.

Choiceoftimeorigin,andwaveformpower

TheamountofworkinvolvedalculatingtheFourierseriescoefficientsforaparticularwaveformshapeisreducedifthewaveformiseitherevenorodd,andthismayoftenbearrangedbyajudiciouschoiceoftimeorigin(thatis,shiftoftimeorigin)2.ThisshifthasthereforemerelyhadtheeffectofconvertingaFourierseriescontainingonlysinetermsintoonecontainingonlycosineterms;theamplitudeofacomponentatanyonefrequencyis,aswewouldexpect,unaltered.Foracomplicatedwaveformwhichisneitherevennorodd,itmustbeexpectedtoludebothsineandcosermsinitsFourierseries.

Asthetimeoriginofawaveformisshifted,thevarioussineandcosinecoefficientsofitsFourierserieswillchange,butthesumofthesquaresofanytwocoefficients AnandBnwillremainconstant,whi eansthattheaveragepowerofthewaveform,aconceptfamiliartoelectrical

engineers,isunaltered.

Theaboveideaslea turallyto ternativetrigonometricformfortheFourierseries.Ifthetwofundamentalcomponentsofawaveformare

A1cos1tandB1sin1t

theirsummaybeexpressedin ternativeformusingtrigonometricidentities

AcostBsint A2B2costtan1B1

1 1 1 1 1 1 1

A2B2sinttan1B1

A1

(1-15)

1 1 1

A1

Thusthesineandcosinecomponentsataparticularfrequencyareexpressedasasinglecosineorsinewavetogetherwithaphaseshift.IfthisprocedureisappliedtoallharmoniccomponentsoftheFourierseries,wegetthealtiveforms

ftA0Cncosn1tnor

N1

ftA0Cnsinn1tn

N1

(1-16)

where

A2B2

Cn ,ntan1Bn

An,n

tan1AnBn

(1-17)

Finally,wenotethats ethemeanpowerrepresentedbyanycomponentwaveis

n n n

0

A2B22C22 (1-18)

andthepowerrepresentedbythetermequalto

A0issimplyA2,thetotalaverag

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论