版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PartI
PeriodicSignals
Time-descriptions
Thefactthatthegreatmajorityoffunctionswhichmayusefullybeconsideredassignalsarefunctionsoftimelendsjustificationtothetreatmentofsignaltheoryintermsoftimeandoffrequency.AperiodicsignalwillthereforebeconsideredtobeonewhichrepeatsitselfexactlyeveryTseconds,whereTiscalledtheperiodofthesignalwaveform;thetheoreticaltreatmentofperiodicwaveformsassumesthatthiactrepetitionitendedthroughoutalltime,bothpastandfuture.Inpractice,ofcourse,signalsdonotrepeatthemselvesindefiniy.Nevertheless,awaveformsuchastheoutputvoltageofamainsrectifierpriortosmoothingdoesrepeatitselfverymanytimes,anditsysisasastrictlyperiodicsignalyieldsvaluableresults.Inothercases,suchastheelectrocardiogram,thewaveformisquasi-periodicandmayusefullybetreatedastrulyperiodicforsomepurpose.Itisworthnotingthatatrulyrepetitivesignalisofverylittleinterestinacommunicationchannel,senofurtherinformationisconveyedafterthefirstcycleofthewaveformhasbeenreceived.Oneofthemainreasonsfordiscussingperiodicsignalsisthlearunderstandingoftheirysisisagreathelpwhendealingwithaperiodicandrandomones.
Acompletetime- descriptionofsuchasignalinvolvesspecifyingitsvaluepreciselyateveryinstantoftime.Insomecasesthismaybedoneverysimplyusingmathematicalnotation.Fortunay,itisinmanycasesusefultodescribeonlycertainaspectsofasignalwaveform,ortorepresentitbyamathematicalformulawhichisonlyapproximate.Thefollowingaspectsmightberelevparticularcases:
theaveragevalueofthesignal,
thepeakvaluereachedbythesignal,
theproportionofthetotaltimespentbetweenvalueaandb,
theperiodofthesignal.
Ifitisdesiredtoapproximatethewaveformbyamathematicalexpression,suchtechniquesasapolynomialexpansion,aTaylorseries,oraFourierseriesmaybeused.Apolynomialofordernhavingtheform
ftaatat2at3 (1-1)
0 1 2 3
maybeusedtofittheactualcurveat(n+1)arbitrarypoints.Theaccuracyoffitwillgenerallyimproveasthenumberofpolynomialterms reases.Itshouldalsobenotedthattheerrorbetween
thetruesignalwaveformandthepolynomialwillnormally everylargeawayfromtheregionofthefittedpoints,andthatthepolynomialitselfcannotbeperiodic.Whereasapolynomialapproximationfitstheactualwaveformatanumberofarbitrarypoints,thealternativeTaylorseriesapproximationprovidesagoodfittoasmoothcontinuouswaveforminthevicinityofoneselectedpoint.ThecoefficientsoftheTaylorseriesarechosentomaketheseriesanditsderivativesagreewiththeactualwaveformatthispoint.Thenumberoftermsintheseriesdeterminestowhatorderofderivativethisagreementwillextend,andhencetheaccuracywithwhichseriesandactual
waveformagreeintheregionofthepointchosen.ThegeneralformoftheTaylorseriesfor
approximatingafunction
fata
dfa
dt
ta2
2!
d2fa
dt2
tan
n!
dnfa
dtn
ft
ftintheregionofthepointtaisgivenby
(1-2)
Generallyspeaking,thefittotheactualwaveformisgoodintheregionofthepointchosen,butrapidlydeterioratestoeitherside.ThepolynomialandTaylorseriesdescriptionsofasignalwaveformarethereforeonlytobe mendedwhenoneisconcernedtoachieveaccuracyoveralimitedregionofthewaveform.Theaccuracyusuallydecreasesrapidlyawayfromthisregion,althoughitmaybeimprovedbyludingadditionalterms(solongastlieswithintheregionofconvergenceoftheseries).Theapproximationsprovidedbysuchmethodsareneverperiodicinformandcannotthereforebeconsideredidealforthedescriptionofrepetitivesignals.
BycontrasttheFourierseriesapproximationiswellsuitedtotherepresentationofasignalwaveformoveranextendedinterval.Whenthesignalisperiodic,theaccuracyoftheFourierseriesdescriptionismaintainedforalltime,sethesignalisrepresentedasthesumofanumberofsinusoidalfunctionswhicharethemselvesperiodic.BeforeexaminingindetailtheFourierseriesmethodofrepresentingasignal,thebackgroundtowhatisknownasthe‘frequency- ’approachwillbeintroduced.
Frequency-descriptions
Thebasicconceptionoffrequency- ysisisthatawaveformofanycomplexitymaybeconsideredasthesumofanumberofsinusoidalwaveformsofsuitableamplitude,periodicity,and
relativephase.Acontinuoussinusoidalfunctionsintisthoughtofasa‘singlefrequency’
waveoffrequencyradians/second,andthefrequency- descriptionofasignalinvolvesitsbreakdownintoanumberofsuchbasicfunctions.ThisisthemethodofFourier ysis.
Thereareanumberofreasonswhysignalrepresentationintermsofasetofcomponentsinusoidalwavesoccupiessuchacentralroleinsignalysis.Thesuitabilityofasetofperiodicfunctionsforapproximatingasignalwaveformoveranextendedintervalhasalreadybeenmentioned,anditwillbeshownlaterthattheuseofsuchtechniquescausestheerrorbetweentheactualsignalanditsapproximationtobeminimizedinacertainimportanse.Afurtherreason
whysinusoidalfunctionsaresoimportsignalysisisthattheyoccurwidelyinthephysicalworldandareverysusceptibletomathematicaltreatment;alargeandextremelyimportantclassofelectricalandmechanicalsystems,knownas‘linearsystems’,respondssinusoidallywhendrivenbyasinusoidaldisturbingfunctionofanyfrequency.Allthesemanifestationsofsinusoidalfunctioninthephysicalworldsuggestthatsignalysisinsinusoidaltermswillsimplifytheproblemofrelatingasignaltounderlyingphysicalcauses,ortothephysicalpropertiesofasystemordevicethroughwhichithaspassed.Finally,sinusoidalfunctionsformasetofwhatarecalled‘orthogonalfunction’,theratherspecialpropertiesandadvantageofwhichwillnowbediscussed.
Orthogonalfunctions
Vectorsandsignals
Adiscussionoforthogonalfunctionsandoftheirvalueforthedescriptionofsignalsmaybeconvenientlyintroducedbyconsideringtheogybetweensignalsandvectors.Avectorisspecifiedbothbyitsmagnitudeanddirection,familiarexamplesbeingandvelocity.Suppose
wehavetwovectorsV1andV2;geometrically,wedefhecomponentofvectorV1along
vectorV2byconstructingtheperpendicularfrom ofV1
V1C12V2Ve
ontoV2.Wethenhave
(1-3)
wherevectorVeistheerrorintheapproximation.Clearly,thiserrorvectorisofminimumlengthwhenitisdrawnperpendiculartothedirectionofV2.ThuswesaythatthecomponentofvectorV1alongvectorV2isgivenbyC12V2,whereC12ischosensuchastomaketheerrorvectorassmallaspossible.Afamiliarcaseofanorthogonalvectorsystemistheuseofthreemutually
perpendicularaxeso-ordinategeometry.
Thesebasicideasaboutthecomparisonofvectorsmaybeextendedtosignals.Supposewewishtoapproximateasignalf1tbyanothersignalorfunctionf2toveracertainintervalt1tt2;inotherwords
f1tC12f2t fort1tt2
WewishtochooseC12toachievethebestapproximation.Ifwedefheerrorfunction
fetf1tC12f2t (1-4)itmightappearatfirstsightthatweshouldchooseC12soastominimizetheaveragevalueoffetoverthechoseninterval.Thedisadvantageofsuchanerrorcriterionisthatlargepositiveand
negativeerrorsoccurringatdifferentinstantswouldtendtocanceleachotherout.Thisdifficultyisavoidedifwechoosetominimizetheaveragesquared-error,ratherthantheerroritself(thisisequivalenttominimizingthesquarerootofthemean-squarederror,or’rm.s’error).Denotingthe
e
averageoff2tby,wehave
1 t2f2tdt 1 t2ftCft2dt
(1-5)
t2t1t1 e
t2t1t1
1 122
DifferentiatingwithrespecttoC12andputtingtheresultingexpressionequaltozerogivesthevalueofC12forwhichisaminimum.Thus
d 1 t2 ftCft2dt0
122 1
1
dC ttt
1 122
Expandingthebracketandchangingtheorderofintegrationanddifferentiatinggives
C t2ftftdt t2f2tdt
12t 1 2 t 2
1 1
(1-6)
Signaldescriptionbysetsoforthogonalfunctions
Supposethatwehaveapproximatedasignal f1toveracertainintervalbythefunction f2tsothatthemeansquareerrorisminimized,butthatwenowwishtoimprovetheapproximation.Itwillbedemonstratedthataveryattractiveapproachistoexpressthesignalintermsofasetof
functions f2t,f3t,f4t,etc.,whicharemutuallyorthogonal.Supposetheinitial
approximationis
f1tC12f2t (1-7)
andthattheerrorisfurtherreducedbyputting
f1tC12f2tC13f3t (1-8)
where f2tandf3tareorthogonalovertheintervalofinterest.NowthatwehaveorporatedtheadditionaltermC13f3t,itisinterestingtofindwhatthenewvalueof
C12mustbeinorderthatthemeansquareerrorisagainminimized.Wenowhave
fetf1tC12f2tC13f3t (1-9)
andthemeansquareerrorintheintervalt1tt2
1
1 t2
istherefore
2
t2t1
tf1tC12f2tC13f3t.dt (1-10)
DifferentiatingpartiallywithrespecttoC12tofindthevalueofC12forwhichthemeansquareerrorisagainminimized,andchangingtheorderofdifferentiationandintegration,wehaveagain
C t2ftftdt t2f2tdt
12t 1 2 t 2
1 1
(1-11)
Inotherwords,thedecisiontoimprovetheapproximationby orporatinganadditionaltermin
doesnotrequireustomodifythecoefficient,providedthatf3tisorthogonaltof2tinthechosentimeinterval1.Bypreciselysimilarargumentswecouldshowthatthevalueof C13would
beunchangedifthesignalweretobeapproximatedbyf3talone.
Thisimportantresultmaybeextendedtocovertherepresentationofasignalintermsofawholesetoforthogonalfunctions.Thevalueofanycoefficientdoesnotdependuponhowmanyfunctionsfromthecompletesetareusedintheapproximation,andisthusunalteredwhenfurthertermsareluded.Theuseofasetoforthogonalfunctionsforsignaldescriptionisogoustotheuseofthreemutuallyperpendicular(thatis,orthogonal)axesforthedescriptionofavectorinthree-dimensionalspace,andgivesrisetothenotionofa‘signalspace’.Accuratesignalrepresentationwilloftenrequiretheuseofmanymorethanthreeorthogonalfunctions,sothatwe
mustthinkofasignalwithinsomeintervalmultidimensionalspace.
t1tt2asbeingrepresentedbyapointina
Tosummarize,thereareanumberofsetsoforthogonalfunctionsavailablesuchastheso-calledLegendrepolynomialsandWalshfunctionsfortheapproximatedescriptionofsignalwaveform,ofwhichthesinusoidalsetisthemostwidelyused.Setsinvolvingpolynomialsintarenotbytheirverynatureperiodic,butmaysensiblybeusedtodescribeonecycle(orless)ofaperiodicwaveform;outsidethechoseninterval,errorsbetweenthetruesignalanditsapproximationwillnormallyreaserapidly.Adescriptionofonecycleofaperiodicsignalintermsofsinusoidialfunctionswill,however,beequallyvalidforalltimebecauseoftheperiodicnatureofeverymemberoftheorthogonal.
TheFourierseries
ThebasisoftheFourierseriesisth omplexperiodicwaveformmaybe ysedintoanumberofharmonicallyrelatedsinusoidalwaveswhichconstituteanorthogonalset.Ifwehaveaperiodic
signalftwithaperiodequaltoT,thenftmayberepresentedbytheseries
ftA0Ancosn1tBnsinn1t (1-12)
n1 n1
where12T.Thusftisconsideredtobemadeupbytheadditionofasteadylevel(A0)toanumberofsinusoidalandcosinusoidalwavesofdifferentfrequencies.Thelowestofthese
frequenciesis1(radianspersecond)andiscalledthe‘fundamental’;wavesofthisfrequencyhaveaperiodequaltothatofthesignal.Frequency21iscalledthe‘secondharmonic’,31isthe‘thirdharmonic’,andsoon.Certainrestrictions,knownastheDirichletconditions,mustbe
ceduponftfortheaboveseriestobevalid.Theintegralftdtoveracompleteperiodmustbefinite,andmaynothavemorethanafinitenumberofdiscontinuitiesinanyfinite
interval.Fortunay,theseconditionsdonotexcludeanysignalwaveformofpracticalinterest.
Evaluationofthecoefficients
1
WenowturntothequestionofevaluatingthecoefficientsA0,AnandBn.Usingtheminimumsquareerrorcriteriondescribedinforegoingtext,andwritingforthesakeofconvenience,wehave
A0
2
fxdx,
A1
fxcosnx.dx,
B1
fxsinnx.dx(1-13)
n n
Althoughinthemajorityofcasesitisconvenientfortheintervalofintegrationtobesymmetricalabouttheorigin,anyintervalequalinlengthtooneperiodofthesignalwaveformmaybechosen.
Manywaveformofpracticalinterestareeitherevenoroddfunctionsoftime.If ftiseventhenbydefinitionftft,whereasifitisoddftft.Ifftisevenandwemultiplyitbytheoddfunctionsinn1ttheresultisalsoodd.ThustheintegrandforeveryBnisodd.Nowwhenanoddfunctionisintegratedoveranintervalsymmetricalaboutt0,theresultisalwayszero.HencealltheBcoefficientsarezeroandweareleftwithaseriescontaining
onlycosines.Bysimilararguments,ifftisoddtheAcoefficientsmustbezeroandweareleftwithasineseries.Itisindeedintuitivelyclearthatanevenfunctioncanonlybebuiltupfroma
numberofotherfunctionswhicharethemselveseven,andviceversa.
WehavealreadyseenhowtheFourierseriesissimplifiedinthecaseofanevenoroddfunction,bylosingeitheritssineoritscoserms.Adifferenttypeofsimplificationoccursinthecaseofawaveformpossessingwhatisknowas‘half-wavesymmetry’.Inmathematicalterms,half-wavesymmetryexistswhen
ftftT2 (1-14)
InotherwordsanytwovaluesofthewaveformseparatedbyT2willbeequalinmagnitudeandoppositeinsign.Generalizing,onlyoddharmonicsexhibithalf-wavesymmetry,andthereforeawaveformofanycomplexitywhichhassuchsymmetrycannotcontainevenharmoniccomponents.Conversely,awaveformknowntocontainanysecond,,orotherharmoniccomponentscannotdisyhalf-wavesymmetry.
Usually,wehavealwaysintegratedoveracompletecycletoderivethecoefficients.Howeverin
thecaseofanoddorevenfunctionitissufficient,andoftensimpler,tointegrateoveronlyonehalfofthecycleandtomultiplytheresultby2.Furthermoreifthewaveisnotonlyevenoroddbutalsodisyshalf-wavesymmetry,itisenoughtointegrateoveronequarterofacycleandmultiplyby4.Thesecloserlimitsareadequateinsuchcasesthefunctionthatisbeingintegratedisrepetitive,repeatinicewithinoneperiodwhenthefunctioniseitherevenorodd,andfourtimeswithinoneperiodwhenitalsoexhibitshalf-wavesymmetry.
Choiceoftimeorigin,andwaveformpower
TheamountofworkinvolvedalculatingtheFourierseriescoefficientsforaparticularwaveformshapeisreducedifthewaveformiseitherevenorodd,andthismayoftenbearrangedbyajudiciouschoiceoftimeorigin(thatis,shiftoftimeorigin)2.ThisshifthasthereforemerelyhadtheeffectofconvertingaFourierseriescontainingonlysinetermsintoonecontainingonlycosineterms;theamplitudeofacomponentatanyonefrequencyis,aswewouldexpect,unaltered.Foracomplicatedwaveformwhichisneitherevennorodd,itmustbeexpectedtoludebothsineandcosermsinitsFourierseries.
Asthetimeoriginofawaveformisshifted,thevarioussineandcosinecoefficientsofitsFourierserieswillchange,butthesumofthesquaresofanytwocoefficients AnandBnwillremainconstant,whi eansthattheaveragepowerofthewaveform,aconceptfamiliartoelectrical
engineers,isunaltered.
Theaboveideaslea turallyto ternativetrigonometricformfortheFourierseries.Ifthetwofundamentalcomponentsofawaveformare
A1cos1tandB1sin1t
theirsummaybeexpressedin ternativeformusingtrigonometricidentities
AcostBsint A2B2costtan1B1
1 1 1 1 1 1 1
A2B2sinttan1B1
A1
(1-15)
1 1 1
A1
Thusthesineandcosinecomponentsataparticularfrequencyareexpressedasasinglecosineorsinewavetogetherwithaphaseshift.IfthisprocedureisappliedtoallharmoniccomponentsoftheFourierseries,wegetthealtiveforms
ftA0Cncosn1tnor
N1
ftA0Cnsinn1tn
N1
(1-16)
where
A2B2
Cn ,ntan1Bn
An,n
tan1AnBn
(1-17)
Finally,wenotethats ethemeanpowerrepresentedbyanycomponentwaveis
n n n
0
A2B22C22 (1-18)
andthepowerrepresentedbythetermequalto
A0issimplyA2,thetotalaverag
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 苏州科技大学天平学院《自然资源学》2023-2024学年第一学期期末试卷
- 2024广东省生鲜牛奶购销合同
- 糖尿病个体治疗
- 《竞争秩序维护法》课件
- 医疗机器人技术与手术自动化考核试卷
- 广告心理与品牌认知考核试卷
- 收款循环案例
- 半导体材料与半导体工程考核试卷
- 2024工厂用工合同范本简单
- 糖尿病肾脏病防治指南
- 《亚里士多德》课件
- 分数阶微积分简介(大三下)
- 静脉炎及静脉外渗的相关知识
- 《女性生殖生》课件
- 项目管理与个人发展
- 燃气工程施工安全课件
- 参加戒毒药物维持治疗个人申请
- 皮试结果判断标准
- 公安部保安管理制度
- 重大隐患判定标准培训课件
- 第三单元《屈原列传》《苏武传》《过秦论》《伶官传序》文言知识综合检测题 统编版高中语文选择性必修中册
评论
0/150
提交评论