版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届宁夏回族自治区银川五中数学九年级第一学期期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,中,,将绕着点旋转至,点的对应点点恰好落在边上.若,,则的长为()A. B. C. D.2.如果2是方程x2-3x+k=0的一个根,则常数k的值为()A.2 B.1 C.-1 D.-23.如图,PA、PB都是⊙O的切线,切点分别为A、B.四边形ACBD内接于⊙O,连接OP则下列结论中错误的是()A.PA=PB B.∠APB+2∠ACB=180°C.OP⊥AB D.∠ADB=2∠APB4.一元二次方程x2﹣2x﹣1=0的根是()A.x1=1,x2=2 B.x1=﹣1,x2=﹣2C.x1=1+,x2=1﹣ D.x1=1+,x2=1﹣5.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为()A.42 B.45 C.46 D.486.如图,在菱形ABCD中,于E,,,则菱形ABCD的周长是A.5 B.10 C.8 D.127.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B,与y轴的正半轴交于点C.现有下列结论:①abc>0;②4a﹣2b+c>0;③2a﹣b>0;④3a+c=0,其中,正确结论的个数是()A.1 B.2 C.3 D.48.一元二次方程(x+2)(x﹣1)=4的解是()A.x1=0,x2=﹣3B.x1=2,x2=﹣3C.x1=1,x2=2D.x1=﹣1,x2=﹣29.如图,小明将一个含有角的直角三角板绕着它的一条直角边所在的直线旋转一周,形成一个几何体,将这个几何体的侧面展开,得到的大致图形是()A. B.C. D.10.已知在Rt△ABC中,∠C=90°,BC=5,那么AB的长为()A.5sinA B.5cosA C.5sinA二、填空题(每小题3分,共24分)11.如图,在直角坐标系中,点,点,过点的直线垂直于线段,点是直线上在第一象限内的一动点,过点作轴,垂足为,把沿翻折,使点落在点处,若以,,为顶点的三角形与△ABP相似,则满足此条件的点的坐标为__________.12.在长8cm,宽6cm的矩形中,截去一个矩形,使留下的矩形与原矩形相似,那么留下的矩形面积是_______cm213.圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为______.14.若,则_______.15.一元二次方程的根是.16.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是_____.17.已知,是抛物线上两点,该抛物线的解析式是__________.18.若代数式5x-5与2x-9的值互为相反数,则x=________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,将绕点顺指针旋转到的位置,点、分别落在点、处,点在轴上,再将绕点顺时针旋转到的位置,点在轴上,将绕点顺时针旋转到的位置,点在轴上,依次进行下午……,若点,,则点的横坐标为__________.20.(6分)如图,⊙O是△ABC的外接圆,PA是⊙O切线,PC交⊙O于点D.(1)求证:∠PAC=∠ABC;(2)若∠BAC=2∠ACB,∠BCD=90°,AB=,CD=2,求⊙O的半径.21.(6分)一种拉杆式旅行箱的示意图如图所示,箱体长,拉杆最大伸长距离,(点在同一条直线上),在箱体的底端装有一圆形滚轮与水平地面切于点某一时刻,点距离水平面,点距离水平面.(1)求圆形滚轮的半径的长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点处且拉杆达到最大延伸距离时,点距离水平地面,求此时拉杆箱与水平面所成角的大小(精确到,参考数据:).22.(8分)如图,已知BCAC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且ADAOAMAP,连接OP.(1)证明:MD//OP;(2)求证:PD是⊙O的切线;(3)若AD24,AMMC,求的值.23.(8分)如图,AB是⊙O的直径,弦DE垂直半径OA,C为垂足,DE=6,连接DB,,过点E作EM∥BD,交BA的延长线于点M.(1)求的半径;(2)求证:EM是⊙O的切线;(3)若弦DF与直径AB相交于点P,当∠APD=45°时,求图中阴影部分的面积.24.(8分)如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.(1)若∠ABD=α,求∠BDC(用α表示);(2)过点C作CE⊥AB于H,交AD于E,∠CAD=β,求∠ACE(用β表示);(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长.25.(10分)已知二次函数(是常数).(1)当时,求二次函数的最小值;(2)当,函数值时,以之对应的自变量的值只有一个,求的值;(3)当,自变量时,函数有最小值为-10,求此时二次函数的表达式.26.(10分)如图①,BC是⊙O的直径,点A在⊙O上,AD⊥BC垂足为D,弧AE=弧AB,BE分别交AD、AC于点F、G.(1)判断△FAG的形状,并说明理由;(2)如图②若点E与点A在直径BC的两侧,BE、AC的延长线交于点G,AD的延长线交BE于点F,其余条件不变(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,若BG=26,DF=5,求⊙O的直径BC.
参考答案一、选择题(每小题3分,共30分)1、A【分析】先在直角三角形ABC中,求出AB,BC,然后证明△ABD为等边三角形,得出BD=AB=2,再根据CD=BC-BD即可得出结果.【题目详解】解:在Rt△ABC中,AC=2,∠B=60°,∴BC=2AB,BC2=AC2+AB2,∴4AB2=AC2+AB2,
∴AB=2,BC=4,
由旋转得,AD=AB,
∵∠B=60°,∴△ABD为等边三角形,
∴BD=AB=2,
∴CD=BC-BD=4-2=2,
故选:A.【题目点拨】此题主要考查了旋转的性质,含30°角的直角三角形的性质,勾股定理以及等边三角形的判定与性质,解本题的关键是综合运用基本性质.2、A【分析】把x=1代入已知方程列出关于k的新方程,通过解方程来求k的值.【题目详解】解:∵1是一元二次方程x1-3x+k=0的一个根,
∴11-3×1+k=0,
解得,k=1.
故选:A.【题目点拨】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.3、D【分析】连接,,根据PA、PB都是⊙O的切线,切点分别为A、B,得到,,所以A,C正确;根据得到,即,所以B正确;据此可得答案.【题目详解】解:如图示,连接,,、是的切线,,,所以A,C正确;又∵,,∴在四边形APBO中,,即,所以B正确;∵D为任意一点,无法证明,故D不正确;故选:D.【题目点拨】本题考查了圆心角和圆周角,圆的切线的性质和切线长定理,熟悉相关性质是解题的关键.4、C【分析】利用一元二次方程的公式法求解可得.【题目详解】解:∵a=1,b=﹣2,c=﹣1,∴△=(﹣2)2﹣4×1×(﹣1)=8>0,则x==1±,即x1=1+,x2=1﹣,故选:C.【题目点拨】本题考查了一元二次方程的解法,根据一元二次方程的特征,灵活选择解法是解题的关键.5、C【解题分析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【题目详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48∴中位数为.故答案为:46.【题目点拨】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.6、C【解题分析】连接AC,根据线段垂直平分线的性质可得AB=AC=2,然后利用周长公式进行计算即可得答案.【题目详解】如图连接AC,,,,菱形ABCD的周长,故选C.【题目点拨】本题考查了菱形的性质、线段的垂直平分线的性质等知识,熟练掌握的灵活应用相关知识是解题的关键.7、B【分析】由抛物线的开口方向,判断a与0的关系;由对称轴与y轴的位置关系,判断ab与0的关系;由抛物线与y轴的交点,判断c与0的关系,进而判断abc与0的关系,据此可判断①.由x=﹣2时,y=4a﹣2b+c,再结合图象x=﹣2时,y>0,即可得4a﹣2b+c与0的关系,据此可判断②.根据图象得对称轴为x=﹣>﹣1,即可得2a﹣b与0的关系,据此可判断③.由x=1时,y=a+b+c,再结合2a﹣b与0的关系,即可得3a+c与0的关系,据此可判断④.【题目详解】解:①∵抛物线的开口向下,∴a<0,∵对称轴位于y轴的左侧,∴a、b同号,即ab>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;②如图,当x=﹣2时,y>0,即4a﹣2b+c>0,故②正确;③对称轴为x=﹣>﹣1,得2a<b,即2a﹣b<0,故③错误;④∵当x=1时,y=0,∴0=a+b+c,又∵2a﹣b<0,即b>2a,∴0=a+b+c>a+2a+c=3a+c,即3a+c<0,故④错误.综上所述,①②正确,即有2个结论正确.故选:B.【题目点拨】本题考查二次函数图象位置与系数的关系.熟练掌握二次函数开口方向、对称轴、与坐标轴交点等性质,并充分运用数形结合是解题关键.8、B【解题分析】解决本题可通过代入验证的办法或者解方程.【题目详解】原方程整理得:x1+x-6=0∴(x+3)(x-1)=0∴x+3=0或x-1=0∴x1=-3,x1=1.故选B.【题目点拨】本题考查了一元二次方程的解法-因式分解法.把方程整理成一元二次方程的一般形式是解决本题的关键.9、C【分析】先根据面动成体得到圆锥,进而可知其侧面展开图是扇形,根据扇形的弧长公式求得扇形的圆心角,即可判别.【题目详解】设含有角的直角三角板的直角边长为1,则斜边长为,将一个含有角的直角三角板绕着它的一条直角边所在的直线旋转一周,形成一个几何体是圆锥,此圆锥的底面周长为:,圆锥的侧面展开图是扇形,,即,∴,∵,∴图C符合题意,故选:C.【题目点拨】本题考查了点、线、面、体中的面动成体,解题关键是根据扇形的弧长公式求得扇形的圆心角.10、C【解题分析】根据三角函数即可解答.【题目详解】解:已知在Rt△ABC中,∠C=90°,BC=5,故BCAB=sinA故AB=5sinA【题目点拨】本题考查正弦函数,掌握公式是解题关键.二、填空题(每小题3分,共24分)11、或【分析】求出直线l的解析式,证出△AOB∽△PCA,得出,设AC=m(m>0),则PC=2m,根据△PCA≌△PDA,得出,当△PAD∽△PBA时,根据,,得出m=2,从而求出P点的坐标为(4,4)、(0,-4),若△PAD∽△BPA,得出,求出,从而得出,求出,即可得出P点的坐标为.【题目详解】∵点A(2,0),点B(0,1),∴直线AB的解析式为y=-x+1∵直线l过点A(4,0),且l⊥AB,∴直线l的解析式为;y=2x-4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴,∴,设AC=m(m>0),则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴,如图1:当△PAD∽△PBA时,则,则,∵AB=,∴AP=2,∴,∴m=±2,(负失去)∴m=2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),如图2,若△PAD∽△BPA,则,∴,则,∴m=±,(负舍去)∴m=,当m=时,PC=1,OC=,∴P点的坐标为(,1),故答案为:P(4,4),P(,1).【题目点拨】此题考查了一次函数的综合,用到的知识点是相似三角形和全等三角形的判定与性质、勾股定理、一次函数等,关键是根据题意画出图形,注意点P在第一象限有两个点.12、1【解题分析】由题意,在长为8cm宽6cm的矩形中,截去一个矩形使留下的矩形与原矩形相似,根据相似形的对应边长比例关系,就可以求解.【题目详解】解:设宽为xcm,
∵留下的矩形与原矩形相似,解得∴截去的矩形的面积为∴留下的矩形的面积为48-21=1cm2,
故答案为:1.【题目点拨】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.13、【分析】首先求得圆锥的底面周长,即扇形的弧长,然后根据弧长的计算公式即可求得圆心角的度数.【题目详解】解:圆锥的底面周长是:,设圆心角的度数是,则,解得:.故侧面展开图的圆心角的度数是.故答案是:.【题目点拨】此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14、1【分析】由得到,由变形得到,再将整体代入,计算即可得到答案.【题目详解】由得到,由变形得到,再将整体代入得到1.【题目点拨】本题考查代数式求值,解题的关键是掌握整体代入法.15、【解题分析】四种解一元二次方程的解法即:直接开平方法,配方法,公式法,因式分解法.注意识别使用简单的方法进行求解,此题应用因式分解法较为简捷,因此,.16、x=﹣1【分析】所求方程ax+b=0的解,即为函数y=ax+b图像与x轴交点横坐标,根据已知条件中点B即可确定.【题目详解】解:方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,∵直线y=ax+b过B(﹣1,0),∴方程ax+b=0的解是x=﹣1,故答案为:x=﹣1.【题目点拨】本题主要考查了一次函数与一元一次方程的关系,掌握一次函数与一元一次方程之间的关系是解题的关键.17、【分析】将A(0,3),B(2,3)代入抛物线y=-x2+bx+c的解析式,可得b,c,可得解析式.【题目详解】∵A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,∴代入得,解得:b=2,c=3,∴抛物线的解析式为:y=-x2+2x+3.故答案为:y=-x2+2x+3.【题目点拨】本题主要考查了待定系数法求解析式,利用代入法解得b,c是解答此题的关键.18、2【解题分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【题目详解】由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.【题目点拨】本题考查了相反数的性质以及一元一次方程的解法.三、解答题(共66分)19、【解题分析】由图形规律可知在X轴上,根据观察的规律即可解题.【题目详解】因为,,所以0A=,OB=4,所以AB==,所以(10,4),(20,4),(30,4),(10090,4),的横坐标为10090++=10096.【题目点拨】本题考查图形的变化—旋转,勾股定理,以及由特殊到一般查找规律.20、(1)见解析;(2)⊙O的半径为1【分析】(1)连接AO延长AO交⊙O于点E,连接EC.想办法证明:∠B+∠EAC=90°,∠PAC+∠EAC=90°即可解决问题;
(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙O的半径为x.求出OM,根据CM2=OC2-OM2=CF2-FM2构建方程即可解决问题;【题目详解】(1)连接AO并延长交⊙O于点E,连接EC.∵AE是直径,∴∠ACE=90°,∴∠EAC+∠E=90°,∵∠B=∠E,∴∠B+∠EAC=90°,∵PA是切线,∴∠PAO=90°,∴∠PAC+∠EAC=90°,∴∠PAC=∠ABC.(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙O的半径为x.∵∠BCD=90°,∴BD是⊙O的直径,∵OM⊥BC,∴BM=MC,,∵OB=OD,∴OM=CD=1,∵∠BAC=∠BDC=2∠ACB,,∴∠BDF=∠CDF,∴∠ACB=∠CDF,∴,∴AB=CF=2,∵CM2=OC2﹣OM2=CF2﹣FM2,∴x2﹣12=(2)2﹣(x﹣1)2,∴x=1或﹣2(舍),∴⊙O的半径为1.【题目点拨】本题考查切线的性质,垂径定理,圆周角定理推论,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用转化的思想思考问题.21、(1);(2)【分析】(1)过点作于点,交于点,由平行得到,再根据相似三角形的性质得到,列出关于半径的方程,解方程即可得解;(2)在(1)结论的基础上结合已知条件,利用锐角三角函数解即可得解.【题目详解】解:(1)过点作于点,交于点,如图:∴∴∴设圆形滚轮的半径的长是∴,即∴∴圆形滚轮的半径的长是;(2)∵∴在中,∴.故答案是:(1);(2)【题目点拨】本题考查了解直角三角形以及相似三角形的判定和性质,在求线段长度时,可以通过建立方程模型来解决问题.22、(1)证明见解析;(2)证明见解析;(3).【分析】(1)根据两边成比例夹角相等两三角形相似证明,然后利用平行线的判定定理即可.(2)欲证明PD是⊙O的切线,只要证明OD⊥PA即可解决问题;(3)连接CD.由(2)可知:PC=PD,由AM=MC,推出AM=2MO=2R,在Rt△AOD中,,可得,推出,推出,,由,可得,再利用全等三角形的性质求出MD即可解决问题;【题目详解】(1)证明:连接、、.∵,,∴,∴,∴,(2)∴,∴,,∵,∴,∴,∵,,∴,∴,∵,∴,∴,∴是的切线.(3)连接.由(1)可知:,∵,∴,在中,,∴,∴,∴,,∵,∴,∵是的中点,∴,∴点是的中点,∴,∵是的直径,∴,在中,∵,,∴,∵,∴,,∴,∴.【题目点拨】此题考查相似三角形的判定和性质、圆周角定理、切线的判定和性质,解题关键在于构造辅助线,相似三角形解决问题.23、⑴OE=2;⑵见详解⑶【分析】(1)连结OE,根据垂径定理可以得到,得到∠AOE=60º,OC=OE,根据勾股定理即可求出.(2)只要证明出∠OEM=90°即可,由(1)得到∠AOE=60º,根据EM∥BD,∠B=∠M=30°,即可求出.(3)连接OF,根据∠APD=45°,可以求出∠EDF=45º,根据圆心角为2倍的圆周角,得到∠BOE,用扇形OEF面积减去三角形OEF面积即可.【题目详解】(1)连结OE∵DE垂直OA,∠B=30°∴CE=DE=3,∴∠AOE=2∠B=60º,∴∠CEO=30°,OC=OE由勾股定理得OE=(2)∵EM∥BD,∴∠M=∠B=30º,∠M+∠AOE=90º∴∠OEM=90º,即OE⊥ME,∴EM是⊙O的切线(3)再连结OF,当∠APD=45º时,∠EDF=45º,∴∠EOF=90ºS阴影==【题目点拨】本题主要考查了圆的切线判定、垂径定理、平行线的性质定理以及扇形面积的简单计算,熟记概念是解题的关键.24、(1)∠BDC=α;(2)∠ACE=β;(3)DE=.【分析】(1)连接AD,设∠BDC=γ,∠CAD=β,则∠CAB=∠BDC=γ,证明∠DAB=β−γ,β=90°−γ,∠ABD=2γ,得出∠ABD=2∠BDC,即可得出结果;(2)连接BC,由直角三角形内角和证明∠ACE=∠ABC,由点C为弧ABD中点,得出∠ADC=∠CAD=∠ABC=β,即可得出结果;(3)连接OC,证明∠COB=∠ABD,得出△OCH∽△ABD,则==,求出BD=2OH=10,由勾股定理得出AB==26,则AO=13,AH=AO+OH=18,证明△AHE∽△ADB,得出=,求出AE=,即可得出结果.【题目详解】(1)连接AD,如图1所示:设∠BDC=γ,∠CAD=β,则∠CAB=∠BDC=γ,∵点C为弧ABD中点,∴,∴∠ADC=∠CAD=β,∴∠DAB=β﹣γ,∵AB为⊙O直径,∴∠ADB=90°,∴γ+β=90°,∴β=90°﹣γ,∴∠ABD=90°﹣∠DAB=90°﹣(β﹣γ)=90°﹣90°+γ+γ=2γ,∴∠ABD=2∠BDC,∴∠BDC=∠ABD=α;(2)连接BC,如图2所示:∵AB为⊙O直径,∴∠ACB=90°,即∠BAC+∠ABC=90°,∵CE⊥AB,∴∠ACE+∠BAC=90°,∴∠ACE=∠ABC,∵点C为弧ABD中点,∴,∴∠ADC=∠CAD=∠ABC=β,∴∠ACE=β;(3)连接OC,如图3所示:∴∠COB=2∠CAB,∵∠ABD=2∠BDC,∠BDC=∠CAB,∴∠COB=∠ABD,∵∠OHC=∠ADB=90°,∴△OCH∽△ABD,∴==,∴BD=2OH=10,∴AB===26,∴AO=13,∴AH=AO+OH=13+5=18,∵∠EAH=∠BAD,∠AHE=∠ADB=90°,∴△AHE∽△ADB,∴=,即=,∴AE=,∴DE=AD﹣AE=24﹣=.【题目点拨】本题考查了圆周角定理、相似三角形的判定和性质、三角形内角和定理、勾股定理等知识;正确作出辅助线是解题的关键.25、(1)当x=2时,;(2)b=±3;
(3)或【分析】(1)将代入并化简,从而求出二次函数的最小值;(2)根据自变量的值只有一个,得出根的判别式,从而求出的值;(3)当,对称轴为x=b,分b<1、、三种情况进行讨论,从而得出二次函数的表达式.【题目详解】(1)当b=2,c=5时,∴当x=2时,(2)当c=3,函数值时,
∴∵对应的自变量的值只有一个,
∴,∴b=±3(3)
当c=3b时,∴抛物线对称轴为:x=b①b<1时,在自变量x的值满足1≤x≤5的情况下,y随x的增大而增大,∴当x=1时,y最小.∴∴b=﹣11②,当x=b时,y最小.∴∴,(舍去)
③时,在自变量x的值满足1≤x≤5的情况下,y随x的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备租赁合同:考古挖掘
- 财务管理工具与技能培训管理办法
- 2024年重组家庭共有财产处理离婚协议3篇
- 自动离职员工交接指南
- 桥梁弱电工程承包合同样本
- 生产能力评估与改进
- 2025年度企业人才引进合同主体变更三方协议3篇
- 游戏设备租赁合同自行操作手册
- 长期仓储租赁合同样本
- 合同负债在施工企业中的应对策略
- 玉溪大红山铁矿二期北采区采矿施工组织设计
- 2024年《多媒体技术与应用》 考试题库及答案
- 2024年外研版九年级英语上册知识点总结
- 必刷题2024六年级英语上册语法规则专项专题训练(含答案)
- 2024新教科版四年级上册科学知识点总结精简版
- 《朝花夕拾》阅读推进课 教学设计-2023-2024学年统编版语文七年级下册
- 人工智能在矿产勘探中的应用分析篇
- 项目驻场服务合同协议书
- 2024山东省招聘社区工作者试题及答案
- 11SG102-3 钢吊车梁系统设计图平面表示方法和构造详图
- DL∕T 5494-2014 电力工程场地地震安全性评价规程
评论
0/150
提交评论