广东省深圳市南山区实验教育集团2024届数学九上期末联考试题含解析_第1页
广东省深圳市南山区实验教育集团2024届数学九上期末联考试题含解析_第2页
广东省深圳市南山区实验教育集团2024届数学九上期末联考试题含解析_第3页
广东省深圳市南山区实验教育集团2024届数学九上期末联考试题含解析_第4页
广东省深圳市南山区实验教育集团2024届数学九上期末联考试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳市南山区实验教育集团2024届数学九上期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图所示,在矩形中,,点在边上,平分,,垂足为,则等于()A. B.1 C. D.22.若正方形的外接圆半径为2,则其内切圆半径为()A.2 B. C. D.13.若△ABC∽△ADE,若AB=6,AC=4,AD=3,则AE的长是()A.1 B.2 C.1.5 D.34.如图,平行于x轴的直线与函数y1=(a>1,x>1),y2=(b>1.x>1)的图象分别相交于A、B两点,且点A在点B的右侧,在X轴上取一点C,使得△ABC的面积为3,则a﹣b的值为()A.6 B.﹣6 C.3 D.﹣35.已知OA=5cm,以O为圆心,r为半径作⊙O.若点A在⊙O内,则r的值可以是()A.3cm B.4cm C.5cm D.6cm6.如图,正六边形内接于,正六边形的周长是12,则的半径是()A.3 B.2 C. D.7.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是()A.15° B.25° C.30° D.75°8.观察下列等式:①②③④…请根据上述规律判断下列等式正确的是()A. B.C. D.9.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(

)A.4 B.3 C.2 D.10.如图,过以为直径的半圆上一点作,交于点,已知,,则的长为()A.7 B.8 C.9 D.10二、填空题(每小题3分,共24分)11.如果x:y=1:2,那么=_____.12.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为_____.13.用半径为3cm,圆心角是120°的扇形围成一个圆锥的侧面,则这个圆锥的底面半径等于_____cm.14.有四条线段,分别为3,4,5,6,从中任取三条,能够成直角三角形的概率是15.如上图,四边形中,,点在轴上,双曲线过点,交于点,连接.若,,则的值为______.16.写出一个你认为的必然事件_________.17.如果反比例函数的图象经过点,则该反比例函数的解析式为____________18.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:AB=4:9,则S△ADE:S△ABC=.三、解答题(共66分)19.(10分)小明同学解一元二次方程x2﹣6x﹣1=0的过程如图所示.解:x2﹣6x=1…①x2﹣6x+9=1…②(x﹣3)2=1…③x﹣3=±1…④x1=4,x2=2…⑤(1)小明解方程的方法是.(A)直接开平方法(B)因式分解法(C)配方法(D)公式法他的求解过程从第步开始出现错误.(2)解这个方程.20.(6分)(1)解方程:x2+4x﹣1=0(2)计算:cos30°+sin45°21.(6分)如图,王乐同学在晩上由路灯走向路灯.当他行到处时发现,他往路灯下的影长为2m,且恰好位于路灯的正下方,接着他又走了到处,此时他在路灯下的影孑恰好位于路灯的正下方(已知王乐身高,路灯高).(1)王乐站在处时,在路灯下的影子是哪条线段?(2)计算王乐站在处时,在路灯下的影长;(3)计算路灯的高度.22.(8分)用适当的方法解下列方程:(1)4x2-1=0;(2)3x2+x-5=0;23.(8分)解一元二次方程:.24.(8分)一个二次函数的图象经过(3,1),(0,-2),(-2,6)三点.求这个二次函数的解析式并写出图象的顶点.25.(10分)某小区新建成的住宅楼主体工程已经竣工,只剩下楼体外表需贴瓷砖,已知楼体外表的面积为.(1)写出每块瓷砖的面积与所需的瓷砖块数(块)之间的函数关系式;(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是,灰、白、蓝瓷砖使用比例是,则需要三种瓷砖各多少块?26.(10分)如图,在以线段AB为直径的⊙O上取一点,连接AC、BC,将△ABC沿AB翻折后得到△ABD

(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC·AE,求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.

参考答案一、选择题(每小题3分,共30分)1、C【分析】利用矩形的性质、全等的性质结合方程与勾股定理计算即可得出答案.【题目详解】根据矩形的性质可得,∠D=90°又EF⊥AE∴∠AEF=90°∴∵AF平分∠DAE∴∠EAF=∠DAF在△AEF和△ADF中∴△AEF≌△ADF∴AE=AD=BC=5,DF=EF在RT△ABE中,∴EC=BC-BE=2设DF=EF=x,则CF=4-x在RT△CEF中,即解得:x=∴故答案选择C.【题目点拨】本题考查的是矩形的综合,难度适中,解题关键是利用全等证出△AEF≌△ADF.2、B【解题分析】试题解析:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,故选B.3、B【分析】根据相似三角形的性质,由,即可得到AE的长.【题目详解】解:∵△ABC∽△ADE,∴,∵AB=6,AC=4,AD=3,∴,∴;故选择:B.【题目点拨】本题考查了相似三角形的性质,解题的关键是熟练掌握相似三角形的性质.4、A【分析】△ABC的面积=•AB•yA,先设A、B两点坐标(其y坐标相同),然后计算相应线段长度,用面积公式即可求解.【题目详解】设A(,m),B(,m),则:△ABC的面积=•AB•yA=•(﹣)•m=3,则a﹣b=2.故选A.【题目点拨】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A、B两点坐标,表示出相应线段长度即可求解问题.5、D【解题分析】试题分析:根据题意可知,若使点A在⊙O内,则点A到圆心的大小应该小于圆的半径,因此圆的半径应该大于1.故选D考点:点与圆的位置关系6、B【分析】根据题意画出图形,求出正六边形的边长,再求出∠AOB=60°即可求出的半径.【题目详解】解:如图,连结OA,OB,∵ABCDEF为正六边形,

∴∠AOB=360°×=60°,

∴△AOB是等边三角形,∵正六边形的周长是12,∴AB=12×=2,∴AO=BO=AB=2,故选B.【题目点拨】本题考查了正多边形和圆,以及正六边形的性质,根据题意画出图形,作出辅助线求出∠AOB=60°是解答此题的关键.7、C【分析】由三角形外角定理求得∠C的度数,再由圆周角定理可求∠B的度数.【题目详解】∵∠A=45°,∠AMD=75°,∴∠C=∠AMD-∠A=75°-45°=30°,∴∠B=∠C=30°,故选C.8、C【分析】根据题目中各个式子的变化规律,可以判断各个选项中的等式是否成立,从而可以解答本题.【题目详解】解:由题意可得,,选项A错误;,选项B错误;,选项C正确;,选项D错误.故选:C.【题目点拨】本题考查的知识点是探寻数式的规律,从题目中找出式子的变化规律是解此题的关键.9、B【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD//y轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【题目详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD//y轴,∴C(1,k),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【题目点拨】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.10、B【分析】根据条件得出,解直角三角形求出BD,根据勾股定理求出CD,代入,即可求出AC的长.【题目详解】∵AB为直径,

∴,

∵CD⊥AB,

∴,

∴,

∴,

∵,BC=6,

∴,∴,∴,∵,∴,∴.

故选:B.【题目点拨】本题考查了圆周角定理,勾股定理,解直角三角形的应用,能够正确解直角三角形是解此题的关键.二、填空题(每小题3分,共24分)11、【分析】根据合比性质,可得答案.【题目详解】解:,即.故答案为.【题目点拨】考查了比例的性质,利用了和比性质:.12、2π【解题分析】试题分析:如图,∠BAO=30°,AO=,在Rt△ABO中,∵tan∠BAO=,∴BO=tan30°=1,即圆锥的底面圆的半径为1,∴AB=,即圆锥的母线长为2,∴圆锥的侧面积=.考点:圆锥的计算.13、1.【分析】把扇形的弧长和圆锥底面周长作为相等关系,列方程求解.【题目详解】设此圆锥的底面半径为r.根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr,解得:r=1.故答案为1.【题目点拨】本题考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.14、.【解题分析】试题分析:能构成三角形的情况为:3,4,5;3,4,6;3,5,6;4,5,6这四种情况.直角三角形只有3,4,5一种情况.故能够成直角三角形的概率是.故答案为.考点:1.勾股定理的逆定理;2.概率公式.15、6【分析】如图,过点F作交OA于点G,由可得OA、BF与OG的关系,设,则,结合可得点B的坐标,将点E、点F代入中即可求出k值.【题目详解】解:如图,过点F作交OA于点G,则设,则,即双曲线过点,点化简得,即解得,即.故答案为:6.【题目点拨】本题主要考查了反比例函数的图像,灵活利用坐标表示线段长和三角形面积是解题的关键.16、瓮中捉鳖(答案不唯一)【分析】此题根据事件的可能性举例即可.【题目详解】必然事件就是一定会发生的,例如:瓮中捉鳖等,故答案:瓮中捉鳖(答案不唯一).【题目点拨】此题考查事件的可能性:必然事件的概念.17、【分析】根据题意把点代入,反比例函数的解析式即可求出k值进而得出答案.【题目详解】解:设反比例函数的解析式为:,把点代入得,所以该反比例函数的解析式为:.故答案为:.【题目点拨】本题考查反比例函数的解析式,根据题意将点代入并求出k值是解题的关键.18、16:1【分析】由DE∥BC,证出△ADE∽△ABC,根据相似三角形的性质即可得到结论.【题目详解】∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2=,故答案为16:1.三、解答题(共66分)19、(1)C,②;(2)x1=+1,x2=﹣+1.【分析】(1)认真分析小明的解答过程即可发现其在第几步出现错误、然后作答即可;(2)用配方法解该二元一次方程即可.【题目详解】解:(1)由小明的解答过程可知,他采用的是配方法解方程,故选:C,他的求解过程从第②步开始出现错误,故答案为:②;(2)∵x2﹣6x=1∴x2﹣6x+9=1+9∴(x﹣1)2=10,∴x﹣1=±∴x=±+1∴x1=+1,x2=﹣+1.【题目点拨】本题考查解一元二次方程的解法,解答本题的关键是掌握一元二次方程的解法,主要方法有直接开平方法、配方法、因式分解法和公式法.20、(1)x=﹣2±;(2)【分析】(1)利用配方法解一元二次方程;(2)利用特殊三角函数的值求解.【题目详解】解:(1)∵x2+4x﹣1=0,∴x2+4x+4=5,∴(x+2)2=5,∴x=﹣2±;(2)原式=×+×=【题目点拨】本题考查了特殊三角函数的求解,掌握特殊三角函数值是解答此题的关键.21、(1)线段CP为王乐在路灯B下的影子;(2)王乐站在Q处时,在路灯A下的影长为1.5m;(3)路灯A的高度为12m【分析】(1)影长为光线与物高相交得到的阴影部分;

(2)易得Rt△CEP∽Rt△CBD,利用对应边成比例可得QD长;

(3)易得Rt△DFQ∽Rt△DAC,利用对应边成比例可得AC长,也就是路灯A的高度.【题目详解】解:(1)线段CP为王乐在路灯B下的影子.(2)由题意得Rt△CEP∽Rt△CBD,∴,解得:QD=1.5m.所以王乐站在Q处时,在路灯A下的影长为1.5m(3)由题意得Rt△QDF∽Rt△CDA,∴,∴,解得:AC=12m.所以路灯A的高度为12m.【题目点拨】本题考查了中心投影及相似的判定和性质,利用两三角形相似,对应边成比例来求线段的长.22、(1);(2)【分析】(1)把方程化为:再利用直接开平方法求解即可得到答案;(2)由再计算利用公式法求解即可得到答案.【题目详解】解:(1)(2)b2-4ac=61>,【题目点拨】本题考查的是一元二次方程的解法,掌握直接开平方法,公式法解一元二次方程是解题的关键.23、【解题分析】用直配方法解方程即可.【题目详解】解:原方程可化为:,∴,解得:.24、二次函数为,顶点.【分析】先设该二次函数的解析式为y=ax2+bx+c(a≠0),利用待定系数法求a,b,c的值,得到二次函数的解析式,然后化为顶点式,即可得到顶点坐标.【题目详解】解:∵二次函数的图象经过,可设所求二次函数为,由已知,函数的图象不经过,两点,可得关于、的二元一次方程组解这个方程,得∴二次函数为:;化为顶点式得:∴顶点为:.【题目点拨】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法以及顶点公式求法等知识,难度不大.25、(1);(2)需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块【分析】(1)根据每块瓷砖的面积S=楼体外表的总面积÷所需的瓷砖块数n块,求出即可;(2)设用灰瓷砖x块,则白瓷砖、蓝瓷砖分别为2x块、2x块,再用n=625000求出即可.【题目详解】解;(1)∵每块瓷砖的面积楼体外表的总面积÷所需的瓷砖块数块,由此可得出与的函数关系式是:(2)当时,设用灰瓷砖块,则白瓷砖、蓝瓷砖分别为块、块,依据题意得出:,解得:,∴需要灰瓷砖125000块,白瓷砖250000块、蓝瓷砖为250000块.【题目点拨】此题主要考查了反比例函数的应用,根据已知得出瓷砖总块数进而得出等式方程是解题关键.26、(1)证明见解析;(2)证明见解析;(3)EF=【解题分析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论