2024届泉州市重点中学数学九上期末监测试题含解析_第1页
2024届泉州市重点中学数学九上期末监测试题含解析_第2页
2024届泉州市重点中学数学九上期末监测试题含解析_第3页
2024届泉州市重点中学数学九上期末监测试题含解析_第4页
2024届泉州市重点中学数学九上期末监测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届泉州市重点中学数学九上期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于()A.6 B.6 C.3 D.92.如图是一个长方体的左视图和俯视图,则其主视图的面积为()A.6 B.8 C.12 D.243.如图,在平面直角坐标系中,正方形ABCD顶点B(﹣1,﹣1),C在x轴正半轴上,A在第二象限双曲线y=﹣上,过D作DE∥x轴交双曲线于E,连接CE,则△CDE的面积为()A.3 B. C.4 D.4.如图图形中,是中心对称图形的是()A. B. C. D.5.下列图形的主视图与左视图不相同的是()A. B. C. D.6.一次函数y=﹣3x﹣2的图象和性质,表述正确的是()A.y随x的增大而增大 B.在y轴上的截距为2C.与x轴交于点(﹣2,0) D.函数图象不经过第一象限7.如图,在△ABC中,∠C=,∠B=,以点A为圆心,适当长为半径画弧,分别交AB,AC于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于P,作射线AP交BC于点D,下列说法不正确的是()

A.∠ADC= B.AD=BD C. D.CD=BD8.图中信息是小明和小华射箭的成绩,两人都射了10箭,则射箭成绩的方差较大的是()A.小明 B.小华 C.两人一样 D.无法确定9.在一个不透明的盒子中,装有绿色、黑色、白色的小球共有60个,除颜色外其他完全相同,一同学通过多次摸球试验后发现其中摸到绿色球、黑色球的频率稳定在和,盒子中白色球的个数可能是()A.24个 B.18个 C.16个 D.6个10.若,则正比例函数与反比例函数在同一坐标系中的大致图象可能是()A. B. C. D.11.如图,在△ABC中,中线AD、BE相交于点F,EG∥BC,交AD于点G,则的值是()A. B. C. D.12.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转42°得到Rt△A'B'C',点A在边B'C上,则∠B'的大小为()A.42° B.48° C.52° D.58°二、填空题(每题4分,共24分)13.已知反比例函数的图象的一支位于第一象限,则常数m的取值范围是___.14.如图,在△ABC中,AC:BC:AB=3:4:5,⊙O沿着△ABC的内部边缘滚动一圈,若⊙O的半径为1,且圆心O运动的路径长为18,则△ABC的周长为_____.15.反比例函数的图象在一、三象限,则应满足_________________.16.如图,⊙O的半径OA长为6,BA与⊙O相切于点A,交半径OC的延长线于点B,BA长为,AH⊥OC,垂足为H,则图中阴影部分面积为_____.(结果保留根号)17.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_____cm.18.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是_____km.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+PB的最小值为_____.20.(8分)已知□ABCD边AB、AD的长是关于x的方程=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?(2)当AB=3时,求□ABCD的周长.21.(8分)如图是反比例函数的图象的一个分支.比例系数的值是________;写出该图象的另一个分支上的个点的坐标:________、________;当在什么范围取值时,是小于的正数?如果自变量取值范围为,求的取值范围.22.(10分)已知关于x的方程.求证:不论m为何值,方程总有实数根;当m为何整数时,方程有两个不相等的正整数根?23.(10分)尺规作图:已知△ABC,如图.(1)求作:△ABC的外接圆⊙O;(2)若AC=4,∠B=30°,则△ABC的外接圆⊙O的半径为.24.(10分)如图,在淮河的右岸边有一高楼,左岸边有一坡度的山坡,点与点在同一水平面上,与在同一平面内.某数学兴趣小组为了测量楼的高度,在坡底处测得楼顶的仰角为,然后沿坡面上行了米到达点处,此时在处测得楼顶的仰角为,求楼的高度.(结果保留整数)(参考数)25.(12分)已知:如图,在中,是边上的高,且,,,求的长.26.解下列方程(1)x2+4x﹣1=0(2)(y+2)2=(3y﹣1)2

参考答案一、选择题(每题4分,共48分)1、B【分析】连接DF,根据垂径定理得到,得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【题目详解】解:连接DF,∵直径CD过弦EF的中点G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,

∴∠CFD=90°,

∴CF=CD•cos∠DCF=12×=,故选B.【题目点拨】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.2、B【分析】左视图可得到长方体的宽和高,俯视图可得到长方体的长和宽,主视图表现长方体的长和高,让长×高即为主视图的面积.【题目详解】解:由左视图可知,长方体的高为2,由俯视图可知,长方体的长为4,∴长方体的主视图的面积为:;故选:B.【题目点拨】本题考查主视图的面积的求法,根据其他视图得到几何体的长和高是解决本题的关键.3、B【分析】作辅助线,构建全等三角形:过A作GH⊥x轴,过B作BG⊥GH,过C作CM⊥ED于M,证明△AHD≌△DMC≌△BGA,设A(x,﹣),结合点B的坐标表示:BG=AH=DM=﹣1﹣x,由HQ=CM,列方程,可得x的值,进而根据三角形面积公式可得结论.【题目详解】过A作GH⊥x轴,过B作BG⊥GH,过C作CM⊥ED于M,设A(x,﹣),∵四边形ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∴∠BAG=∠ADH=∠DCM,∴△AHD≌△DMC≌△BGA(AAS),∴BG=AH=DM=﹣1﹣x,∴AG=CM=DH=1﹣,∵AH+AQ=CM,∴1﹣=﹣﹣1﹣x,解得:x=﹣2,∴A(﹣2,2),CM=AG=DH=1﹣=3,∵BG=AH=DM=﹣1﹣x=1,∴点E的纵坐标为3,把y=3代入y=﹣得:x=﹣,∴E(﹣,3),∴EH=2﹣=,∴DE=DH﹣HE=3﹣=,∴S△CDE=DE•CM=××3=.故选:B.【题目点拨】本题主要考查反比例函数图象和性质与几何图形的综合,掌握“一线三垂直”模型是解题的关键.4、D【分析】根据中心对称图形的概念和识别.【题目详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.故选D.【题目点拨】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.5、D【解题分析】确定各个选项的主视图和左视图,即可解决问题.【题目详解】A选项,主视图:圆;左视图:圆;不符合题意;B选项,主视图:矩形;左视图:矩形;不符合题意;C选项,主视图:三角形;左视图:三角形;不符合题意;D选项,主视图:矩形;左视图:三角形;符合题意;故选D【题目点拨】本题考查几何体的三视图,难度低,熟练掌握各个几何体的三视图是解题关键.6、D【解题分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【题目详解】A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误;B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误;C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x,即与x轴交于点(,0),即C项错误;D.函数图象经过第二三四象限,不经过第一象限,即D项正确.故选D.【题目点拨】本题考查了一次函数图象上点的坐标特征,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.7、C【分析】由题意可知平分,求出,,利用直角三角形角的性质以及等腰三角形的判定和性质一一判断即可.【题目详解】解:在中,,,,由作图可知:平分,,故A正确,故B正确,,,,,故C错误,设,则,,故D正确,故选:C.【题目点拨】本题考查作图复杂作图,角平分线的性质,线段的垂直平分线的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8、B【分析】根据图中的信息找出波动性小的即可.【题目详解】解:根据图中的信息可知,小明的成绩波动性小,则这两人中成绩稳定的是小明;

故射箭成绩的方差较大的是小华,

故选:B.【题目点拨】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9、B【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数,计算白球的个数.【题目详解】解:∵摸到绿色球、黑色球的频率稳定在和,∴摸到白球的频率为1-25%-45%=30%,故口袋中白色球的个数可能是60×30%=18个.故选:B.【题目点拨】本题考查了利用频率估计概率的知识,具体数目应等于总数乘部分所占总体的比值.10、B【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【题目详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选:B.【题目点拨】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.11、C【分析】先证明AG=GD,得到GE为△ADC的中位线,由三角形的中位线可得GEDCBD;由EG∥BC,可证△GEF∽△BDF,由相似三角形的性质,可得;设GF=x,用含x的式子分别表示出AG和AF,则可求得答案.【题目详解】∵E为AC中点,EG∥BC,∴AG=GD,∴GE为△ADC的中位线,∴GEDCBD.∵EG∥BC,∴△GEF∽△BDF,∴,∴FD=2GF.设GF=x,则FD=2x,AG=GD=GF+FD=x+2x=3x,AF=AG+GF=3x+x=4x,∴.故选:C.【题目点拨】本题考查了三角形的中位线定理及相似三角形的判定与性质,熟练掌握相关定理及性质,是解答本题的关键.12、B【分析】先根据旋转的性质得出∠A′=∠BAC=90°,∠ACA′=42°,然后在直角△A′CB′中利用直角三角形两锐角互余求出∠B′=90°﹣∠ACA′=48°.【题目详解】解:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转42°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=42°,∴∠B′=90°﹣∠ACA′=48°.故选:B.【题目点拨】此题主要考查角度的求解,解题的关键是熟知旋转的性质.二、填空题(每题4分,共24分)13、m>1【解题分析】试题分析:∵反比例函数的图象关于原点对称,图象一支位于第一象限,∴图象的另一分支位于第三象限.∴m﹣1>0,解得m>1.14、4【分析】如图,首先利用勾股定理判定△ABC是直角三角形,由题意得圆心O所能达到的区域是△DEG,且与△ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BM,DG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,继而则有矩形DEPG、矩形EQNF、矩形DFMH,从而可知DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°,根据题意可知四边形CPEQ是边长为1的正方形,根据相似三角形的判定可得△DEF∽△ACB,根据相似三角形的性质可知:DE∶EF∶FD=AC∶CB∶BA=3∶4∶1,进而根据圆心O运动的路径长列出方程,求解算出DE、EF、FD的长,根据矩形的性质可得:GP、QN、MH的长,根据切线长定理可设:AG=AH=x,BN=BM=y,根据线段的和差表示出AC、BC、AB的长,进而根据AC∶CB∶BA=3∶4∶1列出比例式,继而求出x、y的值,进而即可求解△ABC的周长.【题目详解】∵AC∶CB∶BA=3∶4∶1,设AC=3a,CB=4a,BA=1a(a>0)∴∴△ABC是直角三角形,设⊙O沿着△ABC的内部边缘滚动一圈,如图所示,连接DE、EF、DF,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AG=AH,PC=CQ,BN=BMDG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,∴DG∥EP,EQ∥FN,FM∥DH,∵⊙O的半径为1∴DG=DH=PE=QE=FN=FM=1,则有矩形DEPG、矩形EQNF、矩形DFMH,∴DE=GP,EF=QN,DF=HM,DE∥GP,DF∥HM,EF∥QN,∠PEF=90°又∵∠CPE=∠CQE=90°,PE=QE=1∴四边形CPEQ是正方形,∴PC=PE=EQ=CQ=1,∵⊙O的半径为1,且圆心O运动的路径长为18,∴DE+EF+DF=18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:1,设DE=3k(k>0),则EF=4k,DF=1k,∵DE+EF+DF=18,∴3k+4k+1k=18,解得k=,∴DE=3k=,EF=4k=6,DF=1k=,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x++1=x+1.1,BC=CQ+QN+BN=1+6+y=y+2,AB=AH+HM+BM=x++y=x+y+2.1,∵AC:BC:AB=3:4:1,∴(x+1.1):(y+2):(x+y+2.1)=3:4:1,解得x=2,y=3,∴AC=2.1,BC=10,AB=3.1,∴AC+BC+AB=4.所以△ABC的周长为4.故答案为4.【题目点拨】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.15、【分析】根据条件反比例函数的图象在一、三象限,可知k+2>0,即可求出k的取值.【题目详解】解:∵反比例函数的图象在一、三象限,∴>0,∴k+2>0,∴故答案为:【题目点拨】难题考察的是反比例函数的性质,图象在一三象限时k>0,图象在二四象限时k<0.16、【分析】由已知条件易求直角三角形AOH的面积以及扇形AOC的面积,根据阴影部分的面积=扇形AOC的面积﹣直角三角形AOH的面积,计算即可.【题目详解】∵BA与⊙O相切于点A,∴AB⊥OA,∴∠OAB=90°,∵OA=6,AB=6,∴tan∠B=,∴∠B=30°,∴∠O=60°,∴∠OAH=30°,∴OH=OA=3,∴AH=3,∴阴影部分的面积=扇形AOC的面积﹣直角三角形AOH的面积=﹣×3×3=;故答案为:.【题目点拨】此题考查圆的性质,直角三角形中30°角所对的直角边等于斜边的一半,扇形面积公式,三角函数.17、40cm【解题分析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【题目详解】∵圆锥的底面直径为60cm,∴圆锥的底面周长为60πcm,∴扇形的弧长为60πcm,设扇形的半径为r,则=60π,解得:r=40cm,故答案为:40cm.【题目点拨】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.18、58【解题分析】设A、B两地的实际距离是x厘米,根据比例尺的性质列出方程,求出x的值,再进行换算即可得出答案.【题目详解】设A.B两地的实际距离是x厘米,∵比例尺为1:1000000,A.B两地的图上距离是5.8厘米,∴1:1000000=5.8:x,解得:x=5800000,∵5800000厘米=58千米,∴A、B两地的实际距离是58千米.故答案为58.【题目点拨】考查图上距离,实际距离,和比例尺之间的关系,注意单位之间的转换.三、解答题(共78分)19、【分析】连接PC,则PC=DE=2,在CB上截取CM=0.25,得出△CPM∽△CBP,即可得出结果.【题目详解】解:连接PC,则PC=DE=2,∴P在以C为圆心,2为半径的圆弧上运动,在CB上截取CM=0.25,连接MP,∴,∴,∵∠MCP=∠PCB,∴△CPM∽△CBP,∴PM=PB,∴PA+PB=PA+PM,∴当P、M、A共线时,PA+PB最小,即.【题目点拨】本题考查了最短路径问题,相似三角形的判定与性质,正确做出辅助线是解题的关键.20、(1);(2)1【分析】(1)由菱形的四边相等知方程有两个相等的实数根,据此利用根的判别式求解可得,注意验根;

(2)由AB=3知方程的一个解为3,代入方程求出m的值,从而还原方程,再利用根与系数的关系得出AB+AD的值,从而得出答案.【题目详解】解:(1)若四边形ABCD是菱形,则AB=AD,

所以方程有两个相等的实数根,

则△=(-m)2-4×1×12=0,

解得m=,检验:当m=时,x=,符合题意;当m=时,x=,不符合题意,故舍去.综上所述,当m为时,四边形ABCD是菱形.

(2)∵AB=3,

∴9-3m+12=0,

解得m=7,

∴方程为x2-7x+12=0,

则AB+AD=7,

∴平行四边形ABCD的周长为2(AB+AD)=1.【题目点拨】本题主要考查根与系数的关系,解题的关键是掌握根的判别式、根与系数的关系,菱形和平行四边形的性质.21、(1)12;(2)(﹣2,﹣6),(﹣3,﹣4);(3)x>4;(4)y的取值范围是4≤y≤6.【解题分析】(1)根据图像过点(2,6),即可得出k的值;(2)根据(1)中所求解析式,即可得出图像上点的坐标;(3)根据y=<3求出x的取值范围即可;(4)根据x=2时,y=6,当x=3时,y=4,得出y的取值范围即可.【题目详解】(1)∵图像过点(2,6),∴k=xy=12;(2)(﹣2,﹣6),(﹣3,﹣4).(答案不唯一,符合xy=12且在第三象限的点即可.);(3)当y=<3时,则x>4;(4)当x=2时,y=6,当x=3时,y=4,故2≤x≤3时,y的取值范围是4≤y≤6.【题目点拨】本题主要考查了待定系数法求反比例函数解析式以及不等式解法等知识,根据不等式的性质得出x与y的取值范围是解题的关键.22、(1)见解析;(2).【解题分析】计算根的判别式,证明;因式分解求出原方程的两个根,根据m为整数、两个不相等的正整数根得到m的值.【题目详解】,,,,即,不论m为何值,方程总有实数根.,,,方程有两个不相等的正整数根,.【题目点拨】本题考查了一元二次方程根的判别式、一元二次方程的解法解决的关键是用因式分解法求出方程的两个根.23、(1)答案见解析;(2)1.【分析】(1)确定三角形的外接圆的圆心,根据其是三角形边的垂直平分线的交点进行确定即可;(2)连接OA,OC,先证明△AOC是等边三角形,从而得到圆的半径.【题目详解】解:(1)作法如下:①作线段AB的垂直平分线,②作线段BC的垂直平分线,③以两条垂直平分线的交点O为圆心,OA长为半圆画圆,则圆O即为所求作的圆;(2)连接OA,OC,∵∠B=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∵AC=1,∴OA=OC=1,即圆的半径是1,故答案为1.【题目点拨】本题考查了尺规作三角形外接圆、圆中的计算问题,解题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论