



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课后素养落实(二)基本计数原理的应用(建议用时:40分钟)一、选择题1.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2160B.720C.240D.120B[第1张门票有10种分法,第2张门票有9种分法,第3张门票有8种分法,由分步乘法计数原理得共有10×9×8=720(种)分法.]2.用0,1,…,9这10个数字,可以组成有重复数字的三位数的个数为()A.243B.252C.261D.648B[0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),所以有重复数字的三位数有900-648=252(个).]3.某城市的号码由六位升为七位(首位数字均不为零),则该城市可增加的部数是()A.9×8×7×6×5×4×3×2B.8×96C.9×106D.×106D[号码是六位数字时,该城市可安装9×105部,同理升为七位时为9×106,∴可增加的数是9×106-9×105×106.故选D.]4.有A,B两种类型的车床各一台,现有甲、乙、丙三名工人,其中甲、乙都会操作两种车床,丙只会操作A种车床,要从这三名工人中选两名分别去操作这两种车床,则不同的选派方法有()A.6种B.5种C.4种D.3种C[不同的选派情况可分为3类:若选甲、乙,有2种方法;若选甲、丙,有1种方法;若选乙、丙,有1种方法.根据分类加法计数原理知,不同的选派方法有2+1+1=4(种).]5.有四位教师在同一年级的四个班各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种B[设四位监考教师分别为A,B,C,D,所教班分别为a,b,c,d.若A监考b,则余下三人监考剩下的三个班,共有3种不同方法.同理,若A监考c,d时,也分别有3种不同方法.由分类加法计数原理,得监考方法共有3+3+3=9(种).]二、填空题6.从3名男生和4名女生中选出2人分别担任2项不同的社区活动服务者,要求男、女生各1人,那么不同的安排方法有________种(用数字作答).24[先选一名男生,有3种方法;再选一名女生,有4种方法.根据分步乘法计数原理可得选取男、女生各1名,不同的安排方案种数为3×4×2=24.]7.有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取两本不同类的书,共有不同的取法______种.242[取两本书中,一本数学、一本语文,根据分步乘法计数原理有10×9=90(种)不同取法;取两本书中,一本语文、一本英语,有9×8=72(种)不同取法;取两本书中,一本数学、一本英语,有10×8=80(种)不同取法.综合以上三类,利用分类加法计数原理,共有90+72+80=242(种)不同取法.]8.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有________种.20[分三类:若甲在周一,则乙丙有4×3=12种排法;若甲在周二,则乙丙有3×2=6种排法;若甲在周三,则乙丙有2×1=2种排法.所以不同的安排方法共有12+6+2=20种.]三、解答题9.如图所示,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,不同的涂色方法共有多少种?(用数字作答)[解]不妨将图中的4个格子依次编号为①②③④,当①③同色时,有6×5×1×5=150种方法;当①③异色时,有6×5×4×4=480种方法.所以共有150+480=630种方法.10.用数字1,2,3,4,5,6组成无重复数字的三位数,然后由小到大排成一个数列.(1)求这个数列的项数;(2)求这个数列中的第89项的值.[解](1)完成这件事需要分别确定百位、十位和个位数,可以先确定百位,再确定十位,最后确定个位,因此要分步相乘.第一步:确定百位数,有6种方法.第二步:确定十位数,有5种方法.第三步:确定个位数,有4种方法.根据分步乘法计数原理,共有N=6×5×4=120个三位数.所以这个数列的项数为120.(2)这个数列中,百位是1,2,3,4的共有4×5×4=80个,百位是5的三位数中,十位是1或2的有4+4=8个,故第88项为526,故从小到大第89项为531.1.一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有()A.6种B.8种C.12种D.48种D[每个景区都有2条线路,所以游览第一个景点有6种选法,游览第二个景点有4种选法,游览第三个景点有2种选法,故共有6×4×2=48种不同的游览线路.]2.将“福”“禄”“寿”填入到如图所示的4×4小方格中,每格内只填入一个汉字,且任意的两个汉字既不同行也不同列,则不同的填写方法有()A.288种B.144种C.576种D.96种C[依题意可分为以下3步:(1)先从16个格子中任选一格放入第一个汉字,有16种方法;(2)任意的两个汉字既不同行也不同列,第二个汉字只有9个格子可以放,有9种方法;(3)第三个汉字只有4个格子可以放,有4种方法.根据分步乘法计数原理,可得不同的填写方法有16×9×4=576(种).]3.从集合{1,2,3,4,5}中任取2个不同的数,作为方程Ax+By=0的系数A,B的值,则形成的不同直线有______条.18[第一步,取A的值,有5种取法;第二步,取B的值,有4种取法,其中当A=1,B=2时与A=2,B=4时是相同的方程;当A=2,B=1时与A=4,B=2时是相同的方程,故共有5×4-2=18条.]4.从2,3,5,7,11中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是________,其中真分数的个数是________.2010[产生分数可分两步:第一步,产生分子有5种方法;第二步,产生分母有4种方法,共有5×4=20个分数.产生真分数,可分四类:第一类,当分子是2时,有4个真分数,同理,当分子分别是3,5,7时,真分数的个数分别是3,2,1,共有4+3+2+1=10个真分数.]用5种颜色给如图所示的四面体ABCD的每条棱着色,要求每条棱只着一种颜色且共顶点的棱着不同的颜色,问有多少种不同的着色方法?[解]第一步,对棱CD着色,有5种不同的方法.第二步,对棱CA着色,有4种不同的方法.第三步,对棱CB着色,有3种不同的方法.第四步,分两类,依次对AD,AB,BD着色:第一类,AD与BC同色,AD有1种着色方法,着AB时,当AB与CD同色时,AB有1种着色方法,BD有3种着色方法,当AB与CD不同色时,AB有2种着色方法,BD有2种着色方法;第二类,AD与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国西番莲花提取物市场调查研究报告
- 2025年中国花岗石Ⅴ型块市场调查研究报告
- 维修施工合同范本
- 新家具家电购销合同范本
- 二手汽车转让合同
- 2025年度办公室木地板铺设与员工心理关爱服务合同
- 酒店翻新工程合同模板
- 邮政代办合作合同书
- 建设项目合同增补协议
- 货物运输合同司机雇佣细则
- 幼儿看图填数
- 酒店项目精装修工程施工组织设计
- 小学生研学旅行展示ppt模板
- 《思想道德与法治》第一章
- 新概念英语第2册课文word版
- 大学生职业生涯规划(高职)PPT完整全套教学课件
- 微信小程序开发实战(第2版)全套PPT完整教学课件
- 部编版语文四年级下册全册大单元整体作业设计
- 重庆自然博物馆
- 收养人抚养教育被收养人能力的证明
- 施工升降机的安装步骤
评论
0/150
提交评论