版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024-2024年萍乡市小升初数学模拟试卷附详细答案附答案小升初数学综合模拟试卷1
一、填空题:
3.在下列(1)、(2)、(3)、(4)四个图形中,可以用若干块
4.在200至300之间,有三个连续的自然数,其中,最小的能被3整除,中间的能被7整除,最大的能被13整除,那么这样的三个连续自然数是______.
当它们之中有一个开头喝水时.另一个跳了______米.
减去的数是
______.
7.100!=1×2×3×…×99×100,这个乘积的结尾共有______个0.
8.一批工人到甲、乙两个工地进行清理工作,甲工地的工作量是乙工
完,乙工地的工作还需4名工人再做1天,那么这批工人有______人.
9.假如两数的和是64,两数的积可以整除4875,那么这两个数的差等于______.
10.甲、乙、丙三人进行100米赛跑,当甲到达终点时,乙离终点还有8米,丙离终点还有12米.假如甲、乙、丙赛跑时速度不变,那么,当乙到达终点时,丙离终点还有______米.
二、解答题:
1.有一个四位整数,在它的某位数字前面加上一个小数点,再和这个四位数相加,得数是2024.97,求这个四位整数.
2.一串数排成一行,它们的规律是这样的:头两个数都是1,从第三个数开头,每一个数都是前两个数的和,也就是:l,1,2,3,5,8,13,21,34,55,…,问:这串数的前100个数中(包括第100个数)有多少个偶数?
3.在一根木棍上,有三种刻度线.第一种刻度线将木棍分成10等份;其次种刻度线将木棍分成12等份;第三种刻度线将木棍分成15等份.假如沿每条刻度线将木棍锯断,木棍总共被锯成多少段?
4.有甲、乙两个同样的杯子,甲杯中有半杯清水,乙杯中盛满了含50%酒精的溶液,先将乙杯中酒精溶液的一半倒入甲杯,搅匀后,再将甲杯中酒精溶液的一半倒入乙杯.问这时乙杯中的酒精是溶液的几分之几?
一、填空题:
1.1601.
由于819=7×9×13,所以,
2.1.
3.(2).
(1)号图形中有11个小方格,11不是3的整数倍,因此,不能用这两种图形拼成.
(3)号图形中有15个小方格,15是3的整数倍,但是,左上角和右下角
只能用来拼,剩下的图形如图1,明显它不能用这两种图形来拼,只有(2)、(4)号图形可以用这两种图形来拼,详细拼法如图2(有多种拼法,仅举一种).
4.258,259,260.
先找出两个连续自然数,第一个被3整除,第2个被7整除.例如,找出6和7,下一个连续自然数是8.
3和7的最小公倍数是21,考虑8加21的整数倍,使加得的数能被13整除.
8+21×12=260
能被13整除,那么258,259,260这三个连续自然数,依次分别能被3,7,13整除,又恰好在200至300之间.
6.37.
画张示意图:
(85-减数)是2份,(157-减数)是5份,
(157-减数)-(85-减数)=72,它恰好是5-2=3(份),因此,72÷3=24是每份所表示的数字,减数=85—24×2=37.
7.24.
结尾0的个数等于2的因子个数和5的因子个数中较小的那个.100!中2的因子个数明显多于5的因子个数,所以结尾0的个数等于100!中的5的因子个数.
8.
9.14.
两数的积可以整除4875,说明这两个数都是4875的约数,我们先把4875分解质因数:
4875=3×5×5×5×13
用这些因子凑成两个数,使它们的和是64,这两个数只能是3×13=39和5×5=25.所以它们的差是:39—25=14.
10.甲跑100米,乙跑92米,丙跑88米所用时间相同,那么,乙的速度∶
二、解答题:
1.1997.
由于小数点后是97,所以原四位数的最终两位是97;又由于97+19=116,所以小数点前面的两位整数是19,这样才能保证19.97+1997=2024.97.于是这个四位整数是1997.
2.33个.
由于奇数+奇数是偶数,奇数+偶数是奇数,偶数+奇数是奇数,两个奇数相加又是偶数.这样从左到右第3,6,9……个数都是偶数.所以偶数的个数有99÷3=33(个).
3.28段.
由于,10等分木棍,中间有9个刻度,12等
分木棍中间有11个刻度,15等分木棍中间有14个刻度,若这些刻度都不重合,中间应有34个刻度,可把木棍锯成35段.但是,需要把重合的刻
小升初数学综合模拟试卷2
一、填空题:
1.用简便方法计算:
2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.
3.算式:
(121+122+…+170)-(41+42+…+98)的结果是______(填奇数或偶数).
4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.
5.20名乒乓球运动员参与单打竞赛,两两配对进行淘汰赛,要决出冠军,一共要竞赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.
7.一个周长为20厘米的大圆内有很多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.
8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.
9.在下面16个6之间添上+、-、×、÷(),使下面的算式成立:
6666666666666666=1997
二、解答题:
1.如图中,三角形的个数有多少?
2.某次大会支配代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?
3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?
4.在九个连续的自然数中,至多有多少个质数?
答案
一、填空题:
1.(1/5)
2.(44)
[1×(1+20%)×(1+20%)-1]÷1×100%=44%
3.(偶数)
在121+122+…+170中共有奇数(170+1-121)÷2=25(个),所以121+122+…+170是25个奇数之和再加上一些偶数,其和为奇数,同理可求出在41+42+…+98中共有奇数29个,其和为奇数,所以奇数减奇数,其差为偶数.
4.(27)
(40+7×2)÷2=27(斤)
5.(19)
淘汰赛每赛一场就要淘汰运动员一名,而且只能淘汰一名.即淘汰掉多少名运动员就恰好进行了多少场竞赛.即20名运动员要赛19场.
6.(301246)
设这六位数是301240+a(a是个一位数),则301240+a=27385×11+(5+a),这个数能被11整除,易知a=6.
7.(20)
每个小圆的半径未知,但全部小圆直径加起来正好是大圆的直径。所以全部小圆的周长之和等于大圆周长,即20厘米.
8.(7)
假设小宇做对10题,最终得分10×8=80分,比实际得分41分多80-41=39.这多得的39分,是把其中做错的题换成做对的题而得到的.故做错题39÷(5+8)=3,做对的题10-3=7.
9.(6666÷6+666+6×6×6+6-6÷6-6÷6=1997).
先用算式中前面一些6凑出一个比较接近1997的数,如6666÷6+666=1777,还差220,而6×6×6=216,这样6666÷6+666+6×6×6=1993,需用余下的5个6消失4:6-6÷6-6÷6=4,问题得以解决.10.(110)
二、解答题
1.(22个)
依据图形特点把图中三角形分类,即一个面积的三角形,还有一类是四个面积的三角形,顶点朝上的有3个,由对称性知:顶点朝下的也有3个,故图中共有三角形个数为16+3+3=22个.2.(14间,40人)
(12+2)÷(3-2)=14(间)
14×2+12=40(人)
3.
4.(4个)
这个问题依据两个事实:
(1)除2之外,偶数都是合数;
(2)九个连续自然数中,肯定含有5的倍数.以下分两种状况争论:①九个连续自然数中最小的大于5,这时其中至多有5个奇数,而这5个奇数中肯定有一个是5的倍数,即其中质数的个数不超过4个,②九个连续的自然数中最小的数不超过5,有下面几种状况:
1,2,3,4,5,6,7,8,9
2,3,4,5,6,7,8,9,10
3,4,5,6,7,8,9。10,11
4,5,6,7,8,9,10,11,12,
5,6,7,8,9,10,11,12,13
这几种状况中,其中质数个数均不超过4.
综上所述,在九个连续自然数中,至多有4个质数.
小升初数学综合模拟试卷3
一、填空题:
1.用简便方法计算下列各题:
(2)1997×19961996-1996×19971997=______;
(3)100+99-98-97+…+4+3-2-1=______.
2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).
3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.
4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应预备红旗______面,黄旗______面.
5.在乘积1×2×3×…×98×99×100中,末尾有______个零.
6.如图中,能看到的方砖有______块,看不到的方砖有______块.
7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.
8.在已考的4次考试中,张明的平均成果为90分(每次考试的满分是100分),为了使平均成果尽快达到95分以上,他至少还要连考______次满分.
9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;其次堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.
10.甲、乙两人同时从相距30千米的两地动身,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向动身的还有一只狗,每小时跑5千米,狗遇到乙后就回头向甲跑去,遇到甲
后又回头向乙跑去,……这只狗就这样来回于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.
二、解答题:
1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸
(1)若P点在岸上,则A点在岸上还是水中?
(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的
次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.
2.将1~3000的整数根据下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简洁说明理由.若办得到,写出正方框里的最大数和最小数.
3.甲、乙、丙、丁四个人竞赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?
4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.
答案
一、填空题:
1.(1)(24)
(2)(0)
原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0
(3)(100)
原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=100
2.(1、0、9、8)
由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.
3.(28)
(65-9)÷2=28
4.(50、150)
40O÷8=50,8÷2-1=3
3×50=150
5.(24)
由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.
6.(36,55)
由图观看发觉:第一层能看到:1块,其次层能看到:
2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.
而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.
7.(25)
8.(5)
考虑已失分状况。要使平均成果达到95分以上,也就是每次平均失分不多于5分.
(100-90)×4÷5=8(次)8-4=4次,即再考4次满分平均分可达到95,要达到95以上即需4+1=5次.
9.(280)
第一堆中钱数必为5+2=7元的倍数;其次堆钱必为20元的倍数(因至少需5个贰元与2个伍元才能有相等的钱数).但两堆钱数相等,所以两堆钱数都应是7×20=140元的倍数.所以至少有2×140=280元.
10.(25)
转换一个角度思索:当甲、乙相见时,甲、乙和狗走路的时间都是一样的.
30÷(3.5+2.5)=5(小时)
5×5=25(千米)
二、解答题:
1.
(1)在水中.
连结AP,与曲线交点数是奇数.
(2)在岸上.
从水中经过一次岸进到水中,脱鞋与穿鞋次数和为2.由于A点在水中,所以不管怎么走,走在水中时,穿鞋、脱鞋次数和为偶数,则B点必在岸上.
2.1997不行能,2160不行能.2142能.
这样框出的九个数的和肯定是被框出的九个数的中间的那个数的9倍,即九个数的和能被9整除.但1997数字和不能被9整除,所以(1)不行能.
又左右两边两列的数不能作为框出的九个数的中间一个数,即能被15整除或被15除余数是1的数,不能作为中间一个数.2160÷9=240,又240÷15=16,余数是零.所以(2)不行能.3.(0场)
四个人共有6场竞赛,由于甲、乙、丙三人胜的场数相同,所以只有两种可能性:甲胜1场或甲胜2场.若甲只胜一场,这时乙、丙各胜一场,说明丁胜三场,这与甲胜丁冲突,所以只可能是甲、乙、丙各胜2场,此时丁三场全败.也就是胜0场.
4.只切两刀,分成三块重新拼合即可.
正方形面积为(2R)2=(2×3)2=36(cm2)
小升初数学综合模拟试卷4
一、填空题:
1.41.2×8.1+11×9.25+537×0.19=______.
2.在下边乘法算式中,被乘数是______.
3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.
4.图中多边形的周长是______厘米.
5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有______只.
7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4
只筐中.徒弟产品放在2只筐中,每只筐都标明白产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.
8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.假如公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.
9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.
10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.
二、解答题:
1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.
2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.
3.如图,甲、乙、丙三个相互咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?
4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?
(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?
(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?
答案
一、填空题
1.(537.5)
原式=412×0.81+537×0.19+11×9.25=412×0.81+(412+125)×0.19+11×9.25
=412×(0.81+0.19)+1.25×19+11×(1.25+8)
=412+1.25×(19+11)+88=537.5
2.(5283)
从*×9,尾数为7入手依次推动即可.
3.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗美容招投标服务质量表
- 2024年羊毛收购合同3篇
- 高铁项目招投标文件模板
- 工业自动化系统工程委托施工合同
- 传媒团副总经理招聘合同范例
- 旅游景区宣传舞蹈演员聘请合同
- 办公大楼建设项目合同样本
- 2025年度铝合金门窗产品研发、生产与安装一体化合同3篇
- 员工心理健康辅导
- 医疗急救通道建设打路施工合同
- Web前端框架应用之微商城项目教学介绍课件
- 如何降低住院病人压疮的发生率PDCA-任亮亮
- 教育学 (202220232)学习通超星课后章节答案期末考试题库2023年
- 单位红头文件模板(各类通知、任命通知公函红头文件)
- 精神压力分析系统心率变异分析系统-健康管理师团队课件
- 正说藏传佛教课件
- 物业承接查验移交资料清单
- 2022年联勤保障部队招考专业技能岗位文职人员(332人)笔试备考题库及答案解析
- 蒸汽压力流速流量管径关系
- 水墨中式中国风书香校园PPT模板
- 2023年新教材人教版高中生物选择性必修3《生物技术与工程》全册各章节课时练习题及章末检测含答案解析
评论
0/150
提交评论