人教版-九年级数学上册《第二十五章 概率初步》单元测试卷附答案_第1页
人教版-九年级数学上册《第二十五章 概率初步》单元测试卷附答案_第2页
人教版-九年级数学上册《第二十五章 概率初步》单元测试卷附答案_第3页
人教版-九年级数学上册《第二十五章 概率初步》单元测试卷附答案_第4页
人教版-九年级数学上册《第二十五章 概率初步》单元测试卷附答案_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第页人教版-九年级数学上册《第二十五章概率初步》单元测试卷附答案学校班级姓名学号一 、选择题1.下列事件中,属于随机事件的是()A.SKIPIF1<0的值比8大B.购买一张彩票,中奖C.地球自转的同时也在绕日公转D.袋中只有5个黄球,摸出一个球是白球2.小李玩射击游戏,打了10发子弹,中了8发,他如果再打5发子弹.下列判断正确的是()A.5发全中B.一定中4发C.一发不中D.可能中3发3.必然事件的概率是()A.-1 B.0 C.0.5 D.14.在英语句子“Wishyousuccess”(祝你成功)中任选一个字母,这个字母为“s”的概率是()A.eq\f(1,4)B.eq\f(4,11)C.eq\f(2,7)D.eq\f(3,7)5.小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是()A.

B.

C.

D.6.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为()A.B.C.D.7.不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.eq\f(2,3)

B.eq\f(1,2)

C.eq\f(1,3)

D.eq\f(1,4)8.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是()A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.99.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.从袋中任意摸出一个球:若为绿球,则甲获胜;若为黑球,则乙获胜.游戏对甲乙双方公平时x的取值为().A.3B.4C.5D.610.有三张正面分别写有数字﹣1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.eq\f(1,6)B.eq\f(1,3)C.eq\f(1,2)D.eq\f(2,3)11.在﹣1,0,1,2,3这五个数中任取两数m,n,则二次函数y=﹣(x+m)2﹣n的顶点在x轴上的概率为()A.0.2 B.0.25 C.0.4 D.0.512.定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为()A.B.C.D.二 、填空题13.成语“水中捞月”用概率的观点理解属于事件,“瓮中捉鳖”是事件。14.从标有-5a2b,2a2b2,eq\f(2,3)ab2,-5ab的四张同样大小的卡片中,任意抽出两张卡片,“抽出的两张卡片不是同类项”这一事件是事件.15.在某校组织的知识竞赛中共有三种试题,其中语文类4题,综合类8题,数学类若干题.已知从中随机抽取一题,是数学类的概率是eq\f(2,3),则数学类有题.16.如图,一只小鸟自由自在的在空中飞翔,然后随意落在如图所示的图形表示的空地上(每个方格除颜色外完全相同),则落在图中阴影部分的概率是.17.下表记录了某种幼树在一定条件下移植成活情况移植总数n400150035007000900014000成活数m325133632036335807312628成活的频率(精确到0.01)0.8130.8910.9150.9050.8970.902由此估计这种幼树在此条件下移植成活的概率约是(精确到0.1).18.取5张看上去无差别的卡片,分别在正面写上数字1,2,3,4,5,现把它们洗匀正面朝下,随机摆放在桌面上.从中任意抽出1张,记卡片上的数字为m,则数字m使分式方程=无解的概率为

.三 、解答题19.在“谁转出的‘四位数’大”比赛中,小明和小新分别转动标有0-9十个数字的转盘四次,每次将转出的数填入表示四位数的四个方格中的任意一个,比较两人得到的四位数,谁得到的数大谁获胜.已知他们四次转出的数字如下表:(1)小明和小新转出的四位数最大分别是多少?(2)小明可能得到的四位数中“千位数字是9”的有哪几个?小新呢?(3)小明一定能获胜吗?请说明理由.20.一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.已知红球个数比黑球个数的2倍多40个,从袋中任取一个球是白球的概率是SKIPIF1<0.求:(1)袋中红球的个数.(2)从袋中任取一个球是黑球的概率.21.刘帅参加知识竞赛,再答对最后两道单选题就能问鼎冠军.第一道单选题有3个选项,第二道单选题有4个选项,这两道题刘帅都不会,不过刘帅还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果刘帅第一题不使用“求助”,那么刘帅答对第一道题的概率是.(2)从概率的角度分析,你建议刘帅在第几题使用“求助”,说明你的理由.22.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?23.如图,把带有指针的圆形转盘A、B分别分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).小明、小乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为3的倍数,则小明胜;否则,小乐胜.(若有指针落在分割线上,则无效,需重新转动转盘)(1)试用列表或画树状图的方法,求小明获胜的概率;(2)请问这个游戏规则对小明、小乐双方公平吗?做出判断并说明理由.24.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:(精确到0.01)转动转盘的次数n1001502005008001000落在“铅笔”的次数m79121162392653794落在“铅笔”的频率0.780.820.79(2)请估计,当n很大时,频率将会接近.(精确到0.1)(3)假如你去转动该转盘一次,你获得铅笔的概率约是.(精确到0.1)(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少(精确到1°)25.现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方体骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同).先由小明投骰子一次,记下骰子向上一面的数字,然后由小王从三张背面朝上放置在桌上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树状图的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢.问小明和小王谁赢的可能性更大?请说明理由.

答案1.B2.D.3.D4.C5.C6.A7.D.8.D.9.B.10.B11.A12.A.13.答案为:不可能;必然;14.答案为:必然.15.答案为:24.16.答案为:eq\f(5,16).17.答案为:0.9.18.答案为:0.2.19.解:(1)小明转出的四位数最大是9730,小新转出的四位数最大是9520.(2)小明可能得到的“千位数字是9”的四位数有6个,分别为:9730,9703,9370,9307,9073,9037.小新可能得到的“千位数字是9”的四位数有6个,分别为:9520,9502,9250,9205,9052,9025.(3)不一定,因为如果小明得到的是9370,小新得到的是9520,则小新获胜.20.解:(1)口袋中白球的个数为290×SKIPIF1<0=10(个)设口袋中黑球有x个,则红球有(2x+40)个.根据题意得x+(2x+40)+10=290,解得x=80.当x=80时,2x+40=200(个).∴袋中红球有200个.(2)80÷290=SKIPIF1<0.∴从袋中任取一个球是黑球的概率是SKIPIF1<0.21.解:(1)∵第一道单选题有3个选项∴小明第一题不使用“求助”,那么小明答对第一道题的概率是:故答案为:;(2)因为如果在第一题使用“求助”,刘帅顺利通关的概率为如果在第二题使用“求助”,刘帅顺利通关的概率为因为>,所以建议刘帅在第一题使用“求助”.22.解:(1)由条形图知,男生共有10+20+13+9=52(人)∴女生人数为100-52=48(人)∴参加武术的女生人数为48-15-8-15=10(人)∴参加武术的人数为20+10=30(人)∴30÷100=30%.参加器乐的人数为9+15=24(人)∴24÷100=24%.补全条形统计图和扇形统计图如图所示.(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是eq\f(10,10+15)×100%=40%.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4)eq\f(15,15+10+8+15)=eq\f(15,48)=eq\f(5,16).答:正好抽到参加“器乐”活动项目的女生的概率为eq\f(5,16).23.解:(1)根据题意画图如下:共有12种情况,指针所指两区域的数字之积为3的倍数的有5种情况则小明胜的概率是eq\f(5,12);(2)由(1)得乐乐胜的概率为1﹣eq\f(5,12)=,两人获胜的概率不相同,所以游戏不公平.24.解:(1)转动转盘的次数n1001502005008001000落在“铅笔”的次数m79121162392653794落在“铅笔”的频率0.80.80.80.780.820.79(2)当n很大时,频率将会接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论