版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
激趣诱思我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.如果希望85%以上的居民的日常生活不受影响,那么标准a定为多少比较合理?你认为较为合理地确定出这个标准,需要做哪些工作?知识点拨一、频率分布表与频率分布直方图1.基本概念名称概念频数、频率将一批数据按要求分为若干个组,各组内数据的个数,叫作该组的频数.每组频数除以全体数据个数的商叫作该组的频率.频率反映该组数据在样本中所占比例的大小样本的频率分布根据随机所抽样本的大小,分别计算某一事件出现的频率,这些频率的分布规律(取值状况)就叫作样本的频率分布极差若一组数据的最小值为a,最大值为b,则b-a的差就叫作极差组距把所有数据分成若干组,每个小组的两个端点之间的距离称为组距2.频率分布表和频率分布直方图的意义从一个总体得到一个包含大量数据的样本时,我们很难从一个个数据中直接看出样本所含的信息.如果把这些数据整理成频率分布表或频率分布直方图,就可以比较清楚地看出样本数据的频率分布,从而估计总体的分布情况.用样本估计总体,是研究统计问题的一个基本思想方法,而对于总体分布,我们总是用样本频率分布对它进行估计.3.频率分布表与频率分布直方图的制作步骤(1)频率分布是指从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布的规律.(2)一般用频率分布直方图反映样本的频率分布.(3)画频率分布直方图的一般步骤为:第一步,求极差.第二步,确定组距和组数.为了方便起见,组距的选择应力求“取整”,极差、组距、组数有如下关系:第三步,分组.通常对组内数值所在区间取左闭右开区间,最后一组取闭区间.第四步,列频率分布表.统计各组数据的频数,计算频率,填入表格中,完成频率分布表.第五步,依据频率分布表画频率分布直方图.画图时,以横轴表示样本数据,纵轴(小长方形的高)表示频率与组距的比值.名师点析
频率分布直方图的特征总体分布情况可以通过样本频率分布情况来估计,样本频率分布是总体分布的一种近似表示,频率分布表和频率分布直方图有以下特征:(1)从频率分布直方图可以清楚地看出数据分布的总体趋势.(2)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.(3)频率分布表和频率分布直方图由样本决定,因此它们会随样本的变化而变化.(4)若固定分组数,随着样本容量的增加,频率分布表中各个频率会稳定在某一个值的附近,从而频率分布直方图中的各个小长方形的高度也会稳定在特定的值上.微思考1绘制频率分布直方图应注意什么问题?④同样一组数据,如果组距不同,横轴、纵轴单位长度不同,得到的频率分布直方图的形状也会不同,不同的形状给人们的印象也不同,这种印象有时会影响我们对总体的判断.微思考2频率分布表与频率分布直方图各有什么特点?提示频率分布表反映具体数据在各个不同区间的取值频率,但不直观,数据的总体态势不明显.频率分布直方图能直观地表明数据分布的形状态势,但失去了原始数据.二、频率折线图在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间,从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,我们称之为频率折线图.名师点析
频率折线图的优点是它反映了数据的变化趋势,随着样本容量的不断增加,分组的不断加密,频率折线就会越来越光滑,最终形成一条光滑的曲线.微拓展总体密度曲线的特征(1)在样本频率分布直方图中,随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计学中称这条光滑曲线为总体密度曲线,如图所示.(2)总体密度曲线反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息,图中阴影部分的面积,就是总体在区间(a,b)内取值的百分比.课堂篇探究学习探究一频数与频率的有关计算例1已知一个容量是40的样本,把它分成六组,第一组到第四组的频数分别是5,6,7,10,第五组的频率是0.2,那么第六组的频数是
,频率是
.
答案4
0.1反思感悟
频数与频率的求解策略对于频数与频率的问题,首先要明确几个等量关系,即各组的频数之和等于样本容量,各组的频率之和为1,频率=.在解题过程中,要明确频数、频率以及样本容量之间的关系,弄清已知、未知,选择合适的公式进行解题.变式训练
1一个容量为20的样本数据,分组后组距与频数如下表:组距[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数234542则样本数据在区间(0,50)上的频率为
.
解析区间(0,50)包括四部分的数据,在这四部分上的数据的频数和是2+3+4+5=14,样本容量为20,所以样本数据在区间(0,50)上的频率为
=0.7.答案0.7探究二画频率分布直方图、频率折线图例2某省为了了解和掌握2020年高考考生的实际答卷情况,随机地取出了100名考生的数学成绩,数据如下:(单位:分)135981021109912111096100103125971171131109210210910411210512487131971021231041041281091231111031059211410810410212912697100115111106117104109111891101218012012110410811812999909912112310711191100991011169710210810195107101102108117991181061199712610812311998121101113102103104108(1)列出频率分布表;(2)画出频率分布直方图和频率折线图;(3)估计该省考生数学成绩在[100,120)分之间的比例.分析先求极差.根据极差与数据个数确定组距、组数,然后按频率分布直方图的画法绘制图形.解在100个数据中,最大值为135,最小值为80,极差为135-80=55.取组距为5,则组数为
=11.(1)频率分布表如下:分组频数频率[80,85)10.010.002[85,90)20.020.004[90,95)40.040.008[95,100)140.140.028[100,105)240.240.048分组频数频率[105,110)150.150.030[110,115)120.120.024[115,120)90.090.018[120,125)110.110.022[125,130)60.060.012[130,135]20.020.004合计1001.000.200(2)根据频率分布表中的有关信息画出频率分布直方图及频率折线图,如图所示.(3)从频率分布表中可知,这100名考生的数学成绩在[100,120)分之间的频率为0.24+0.15+0.12+0.09=0.60,据此估计该省考生数学成绩在[100,120)分之间的比例为60%.反思感悟
组距和组数的确定没有固定的标准,将数据分组时,组数力求合适,使数据的分布规律能较清楚地呈现出来,组数太多或太少都会影响对数据分布情况的了解,若样本容量不超过120个时,按照数据的多少常分为5组~12组,一般样本容量越大,所分组数越多.延伸探究本例条件不变,制成频率分布直方图时分组如下,[80,85),[85,90),[90,95),[95,100),[100,105),[105,110),[110,115),[115,120),[120,125),[125,130),[130,135].若90分或90分以上为及格,请计算该省考生数学成绩的及格率.解列出频率分布表如下
分组频数频率[80,85)10.01[85,90)20.02[90,95)40.04[95,100)140.14[100,105)240.24[105,110)150.15[110,115)120.12[115,120)90.09[120,125)110.11[125,130)60.06[130,135]20.02合计1001.00由表可得,及格(即90分或90分以上)的频率为0.04+0.14+0.24+0.15+0.12+0.09+0.11+0.06+0.02=0.97.故及格率为97%.探究三频率分布直方图的应用例3某校在5月份开展了科技月活动.在活动中某班举行了小制作评比,规定作品上交的时间为5月1日到31日,逾期不得参加评比.评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图).已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数最多,有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?分析(1)根据条件:从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,计算参加评比的作品总数;(2)根据频率分布直方图判断哪组上交的作品最多,再由本组的频率计算频数;(3)先分别由第四组和第六组的频率计算该组的频数,再计算获奖率.解(1)设从左到右各长方形的高分别为2x,3x,4x,6x,4x,x.参加评比的作品总数为a件,又(2x+3x+4x+6x+4x+x)×5=1,解得a=60(件).(2)由频率分布直方图可以看出第四组上交的作品数量最多,共有6×x×5×a=18(件).反思感悟
1.频率分布直方图的性质(1)因为小矩形的面积=组距×=频率,所以各小矩形的面积表示相应各组的频率.这样,频率分布直方图就以面积的形式反映了数据落在各个小组内的频率大小;(2)在频率分布直方图中,各小矩形的面积之和等于1;2.频率分布直方图反映了样本在各个范围内取值的可能性,由抽样的代表性利用样本在某一范围内的频率,可近似地估计总体在这一范围内取值的可能性.变式训练
2为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图如图所示,图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110或110以上为达标,试估计该校全体高一学生的达标率是多少?素养形成利用频率分布直方图进行计算典例
某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:[13,14),[14,15),[15,16),[16,17),[17,18),[18,19].如图所示的是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则x和y分别为(
)A.0.9,35 B.0.9,45C.0.1,35 D.0.1,45解析从频率分布直方图可以看出x=1-(0.06+0.04)=0.9,y=50×(0.36+0.34)=35.答案A1.一个容量为20的样本数据,分组及各组的频数如下
分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]频数234542则样本在区间[20,60)上的频率是(
)A.0.5 B.0.6 C.0.7 D.0.8答案D当堂检测2.一个容量为32的样本,已知某组数据的频率为0.125,则该组数据的频数为(
)A.2 B.4 C.6 D.8解析0.125×32=4.答案B3.(2020天津,4)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为(
)A.10 B.18 C.20 D.36解析在[5.43,5.47]的频率为(6.25+5.00)×0.02=0.225,∴0.225×80=18.故选B.答案B4.从某小学随机抽取100名同学,将他们的身高(单位:cm)数据绘制成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 万能英语教学个人计划
- 2024年护理部工作计划表
- 公司企业个人工作计划范文
- 一日计划学后感想
- 政府信息公开工作计划
- 上半年初二数学教学计划
- 培训计划方案培训计划方案
- 妇产科个人发展规划妇产科医生个人工作计划
- 上学期班长的工作计划书
- 医院环境卫生工作计划医院人才梯队建设
- 国家开放大学《Python语言基础》形考任务1参考答案
- 山东省济南市历下区2023-2024学年八年级上学期期末语文试题
- 2024年完整离婚协议书下载-(含多款)
- 探针台行业分析
- 嵌入式工程师大学生职业规划发展报告
- 2024年安徽省高中学业水平合格性考试英语试卷试题(含答案)
- 徐州市2023-2024学年八年级上学期期末英语试卷(含答案解析)
- 供应链风险管理报告
- 《科技节主题班会》课件
- 2023-2024学年广东省佛山市顺德区七年级(上)期末数学试卷(含解析)
- 江苏省徐州市2023-2024学年七年级上学期期末语文试题
评论
0/150
提交评论