总结版:滞后算子_第1页
总结版:滞后算子_第2页
总结版:滞后算子_第3页
总结版:滞后算子_第4页
总结版:滞后算子_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

#第二章滞后算子及其性质滞后算子是对时间序列进行动态线性运算的主要工具,利用滞后算子可以使得一些非线性运算非常简洁。§2.1基本概念时间序列是以观测值发生的时期作为标记的数据集合。一般情况下,我们是从某个特定的时间开始采集数据,直到另一个固定的时间为止,我们可以将获得的数据表示为:(yi,y2,…,%)如果能够从更早的时间开始观测,或者观测到更晚的时期,那么上面的数据区间可以进一步扩充。相对而言,上述数据只是一个数据的片段,整个数据序列可以表示为:(…,yi,y2,…,yT,…,)={yt}t孝例2.1几种代表性的时间序列时间趋势本身也可以构成一个时间序列,此时:y=t;t另一种特殊的时间序列是常数时间序列,即:y=c,c是常数,这种时间的取值t不受时间的影响;在随机分析中常用的一种时间序列是高斯白噪声过程,表示为:y=£,{s}t=+8是tttt一个独立随机变量序列,每个随机变量都服从N(0,b2)分布。时间序列之间也可以进行转换,类似于使用函数关系进行转换。它是将输入时间序列转换为输出时间序列。例2.2几种代表性的时间序列转换假设X是一个时间序列,假设转换关系为:y=Px,这种算子是将一个时间序列ttt的每一个时期的值乘以常数转换为一个新的时间序列。假设x和w是两个时间序列,算子转换方式为:y=x+w,此算子是将两个时ttttt间序列求和。定义2.1如果算子运算是将一个时间序列的前一期值转化为当期值,则称此算子为滞后算子,记做L。即对任意时间序列x,滞后算子满足:tTOC\o"1-5"\h\zL(x)三x1(1)tt—1类似地,可以定义高阶滞后算子,例如二阶滞后算子记为L2,对任意时间序列xt,二阶滞后算子满足:L2(x)三L[L(x)]=x(2)ttt—2一般地,对于任意正整数k,有:Lk(x)=x(3)tt—k命题2.1滞后算子运算满足线性性质:L(卩x)=卩L(x)ttL(x+w)=L(x)+L(w)TOC\o"1-5"\h\ztttt证明:(1)利用滞后算子性质,可以得到:L(px)=Px=PL(x)tt—1t(2)L(x+w)=x+w=L(x)+L(w)Endttt—1t—1tt由于滞后算子具有上述运算性质和乘法的交换性质,因此可以定义滞后算子多项式,它的作用是通过它对时间序列的作用获得一个新的时间序列,并且揭示这两个时间序列之间的

关系。显然,滞后算子作用到常数时间序列上,时间序列仍然保持常数,即:L(c)=c。§2.2一阶差分方程(4)(5)利用滞后算子,可以将前面的一阶差分方程表示成为滞后算子形式y=0y+w=0Ly+w(4)(5)tt-1ttt也可以表示为:(1-0L)y=wtt在上述等式两边同时作用算子:(1+0L+02L2h01Lt),可以得到:(1+0L+.…+01Lt)(1-0L)y=(1+0L+.…+01Lt)wtt计算得到:(1-0t+1Lt+1)y=(1+0L+01Lt)wtt利用滞后算子性质得到:yt=0tyt=0t+1y-1+wt+0w+—+0twt-10(6)上述差分方程的解同利用叠代算法得到的解是致的。注意到算子作用后的等式:注意到算子作用后的等式:(1+0L+—+0tLt)(1-0L)y=y-0t+1yttt如果时间序列y是有界的,即存在有限的常数M,使得任意时间均有:Iyl<M,并tt且10I<1,则上式当中的尾项随着时间增加趋于零。从而有:TOC\o"1-5"\h\zlim[(1+0L+—+0tLt)](1-0L)y=y(7)tttT8如果利用“1”表示恒等算子,则有:lim[(1+0L+—+0tLt)](1-0L)=1(8)tS记(需要注意的是,这里只是表示一个运算符号):(1-0L)-1=lim[(1+0L+—+0tLt)](9)tS因此得到了“逆算子”的表达式,这类似于以滞后算子为变量的函数展开式。定义2.2当10I<1时,定义算子(1-0L)的逆算子为(1-0L)-1,它满足:(1-0L)(1-0L)-1=(1-0L)-1(1-0L)=I(10)其中I表示单位算子,即对任意时间序列y,有:I(y)=yttt在形式上逆算子可以表示为:(i-0乙)-1=jLj(11)j=0这表示逆算子作为算子运算规则是:对于任意时间序列y,有:(1-0L)-1y=£0jLj(y)=£©jy.ttt一/j=0j=0当10I>1时,逆算子(1-0L)-1的定义以后讨论。如果时间序列y是有界的,则一阶差分方程的解可以表示为:ty=w+0w+02w+—=£0jwttt—1t-2t—/j=0可以验算上述表达式确实满足一阶线性差分方程。但是解并惟一,例如对于任意实数a0,下述形式的表达式均是方程的解。

y=a沖t+£0jwt0t-jj=0上述差分方程的解中含有待定系数,这为判断解的性质留出一定的余地§2.3二阶差分方程我们考察二阶差分方程的滞后算子表达式:y=°1y1+02y2+wt1t12t2t将其利用滞后算子表示为:(10L0L2)y=w(12)2tt对二阶滞后算子多项式进行因式分解,即寻求九和九使得:12(1-0L-0L2)=(1-九L)(l—九L)=[1-(X+X)L+XXL2]12121212显然九和九是差分方程对应的特征方程的根:12九2-0九一0=0(13)12当特征根九1和九2落在单位圆内的时候(这也是差分方程的稳定性条件),滞后算子多项式分解为:(1—九L)-1=1+XL+九2L2+九3L+…,1111(1XL)1=1+XL+X2L2+X3L3+…222这时二阶差分方程解可以表示为:y=(1XL)1(1XL)1wt12t注意到算子分式也可以进行分项分式分解(如此分解需要证明,参见Sargent,1987,p.184):(1-X1L(1-X1L)(1一X2L)(X1-X2)v(1-X1L)(1-X2L)丿将上述表达式带入到二阶差分方程解中:(XX、12-yt(X-X)((1-XL)(1-XL)丿12121G+XL+X2L+…+1+XL+X2L+…h(X-X)1122t12=(c+c)w+(cX+cX)w+(cX2+cX2)w+…12t1122,t-11122,t-2XX1,C=2X-X2X-X1221利用上述公式,可以得到外生扰动的动态反应乘子为:dy=cXj+cXj,j=0,1,…dw1122t上述利用滞后算子运算得到的乘数与以前所得完全一致。其中:c1(14)例2.3对于二阶差分方程而言,其特征方程是:X2-0X-0=012得到特征根为:X1=2(01+理1+402),X2=2(01-:01+402)上述方程的稳定性与滞后算子多项式的根落在单位圆内是一致的。§2.4p阶差分方程上述算子多项式的分解方法可以直接推广到p阶差分方程情形。将p阶差分方程表示成为滞后算子形式:(1—eL—eL2—…—eLp)y=w12ptt将上式左端的算子多项式分解为:(1—el—eL2—eLp)=(i—九l)(i—九L)•—(i—九L)12p12p这相当于寻求(九,…,九)使得下述代数多项式恒等:1p(1—ez—ez2——ezp)=(i—九z)(i—九z)…(i—九z)12p12p定义^=z-1,则可以将上述多项式表示成为:(九p—e九p—i—e九p—2—e)=(九一九)(九一九)…(九一九)12p12p这意味着算子多项式的分解,就相当于求出差分方程特征方程的根。如果差分方程的根相异,且全部落在单位圆内,则可以进行下述分式分解1ccc11p(15)(16)(17)(18)c1+(1—九L)(1—九L)…(1—九L)(1—九L)(1—九L)12p11通过待定系数法,可以得到上述分式中的参数为:九p—1■i(1—九L)p(19)c,=i,j=1,2,…,p1九p—1+九p—1+H九p—112p显然有:cHcH-Hc=112p利用上述算子多项式分解,可以得到差分方程的解为1(20)(21)y=wt(1—eL—eL2—…—eLp)t12pccc=1w+2wHHpw(1—九L)t(1—九L)t(1—九L)t12p=c(1+九L+九2L2h—)w+c(1+九L+九2L2h—)w1111+…+c(1+九L+九2L2+—・)wpppt=(c+cHHc)w+(c九+c入HHC九)wH12pp1122ppp—1+(c九j+c九jHHc九j)wH1122ppp—j通过上述方程通解,可以得到动态反应乘子为:Qy.”t+,_Qwt命题2.2j=c九j+c九j+Hc九j,j=1,2,•…1122pp(22)(23)外生变量w对y现值的影响和外生变量w持续扰动对y的动态影响乘子tttt是:dwtlimjst+j丿……12Qy.Qy.Qy.++1t+jQwQwQwttH1tHj1—e卩—e卩2—•…—e卩p12p1证明:将差分方程的解表示为:y=9w+9w+9wH—,t1t2t—23t—3其中:甲=[cXj+•…+cXj],j—1,2,•…j11pp设:9(L)=9+9L+9L+9L+•…0123利用算子多项式表示:y—9(L)wttw对y现值的影响可以表示为:tt岛审jy.=£卩j亠=£卩丿9.=9(卩)TOC\o"1-5"\h\z.=ot+j丿.=o8wf.=oj注意到:(L)=9+9L+9L2+9L3+•…—[(1—XL)•…(1—XL)]-101231p因此有:9(卩)=[(i_打卩)…(1-X卩)]-1=[i_tP_e2卩2—e卩p]-11p12p长期乘数相当于0-1的情形,从而得到公式所示的公式。End上述命题结论是利用滞后算子多项式推导的,其结论同利用差分方程矩阵表示所得到的结论是一致的。§2.5初始条件和无界序列假设给定下述线性差分方程:TOC\o"1-5"\h\zy=e,y,+e2y2+…+0y+w(24)t1t12t2ptpt一般情况下,求解p阶差分方程的特解,需要p个初值:y,y,…,y,也需要外生12p变量的一个输入序列:w,w,…,w,这样一来根据差分方程结构,便可以确定y的时间路01tt径。但是,在一些常见的经济或者金融时间序列当中,无法给定具体的初值或者完整的外生输入变量,那么这时差分方程解的性质如何?例2.4假设变量P表示股票价格,D表示股票派发的红利。如果一个投资者在时刻ttt买入股票,然后在时刻t+1卖出股票,则他将获得实际红利收入D/P和价格收益t+1t(P-P)/P,因此投资者的收益率为:t+1ttTOC\o"1-5"\h\zr=(PP)/P+D/P(25)t+1t+1ttt+1t在简单的股票市场模型当中,假设收益率是常数,则上述方程可以转化为股票价格的差分方程模型:P=(1+r)PD(26)tt1t如果知道红利序列{D,D,…,D}和股票价格的初值P,则可以得到股票价格路径为:12t0P=(1+r)tP(1+r)t1D(1+r)t2D…D(27)t012t但是如果仅仅知道红利序列,而不知道股票价格初值,则可能有很多价格轨迹满足价格的差分方程。为了说明这个问题,进一步假设红利为常数,则有:P=(1+r)tPD[(1+r)t1+(1+r)t2+…+1]t0(28)—(1+r)tP-1-(1+r)tD(28)01(1+r)=(1+r)t[P0(D/r)]+(D/r)如果初始时期股票价格等于红利贴现,即P)—D/r,则有:P—D/r,t—0,1,2,…t此时股票价格保持常数,股价等于红利除以收益率。这种股票价格被称为在收益率是常

数情形的股价基础成分。假设初始股价超过了D/r,即P〉D/r,这时股票价格出现了扩散现象,这与资0产定价理论相符。因为为了保持资产收益率不变,股票的价格就会出现持续上升,同时假设红利是固定的,红利带来的实际收益减少将被股价的加速增长所弥补,这样就出现了股票价格膨胀的现象,即出现股票价格泡沫。为了消除股价中的投资泡沫,一种方法是对股票价格路径给予有界性限制。例如,假设对于所有时期的股票价格满足:P<P,t=0,1,2,…这样一来,满足上述约束的股票价格路径便是常数的市场基础价格。上面假设了常数红利,现在假设红利序列是有界的。将股价表示为:P=-^[P+D]t1+rt+1t+1进行向前叠代运算有11+rTP+t+TT进行向前叠代运算有11+rTP+t+TTD+t+TT-1Dt+T-1+•…+如果价格序列{P}满足约束条件:t11+r在假设{D}和{P}均是有界序列,则得到股票价格水平满足:t11+rlimT—gP=Jgtj=0Dt+1TP=0t+TtjDt+j这是红利随时间变化时股票价格的市场基础成分。需要注意的是,对于上述情形的市场基础成分,需要投资者对于未来红利具有完全预期当引入预期红利时,上述表达式仍然适用,这时可以修改为:P=ggP=ggtj=0Et(Dt+j)1+r利用红利预期的股价公式,可以确定价格初值P:0P0=g=0j=0如此初值是否满足一般的股价模型,我们可以代入到具有初值的确定解中验证P=(1+r)tP-(1+r)t-1D-(1+r)t-2D-…-Dt012t将P代入上式后得到:jDjDt+jP=ggtj=0这正是在边界条件下所推导的向前预期解,由此可见该解与初值选择是吻合的。例2.5我们继续利用滞后算子方法讨论股票价格路径的性质。利用算子表示为:[1-(1+r)L]P=-Dtt在上述表达式中,滞后算子多项式的特征根小于1,无法采用逆算子的一般表达式,为此我们需要采取新的定义。定义滞后算子L的逆算子为L-1,具有性质:(1)L-1L=LL-1=I

⑵L-i(y)=y1tt+1这样一来,滞后算子乘积就具有幂乘的性质对于任意正整数i和j,有:LiL-j=Li-j对方程(2.12)两端乘以算子多项式:1(1+r)L1(1+r)L-1+1(1+r)2L-2+…+1(1+r)t-1L-(T-1)整理得到:1+(1+r)-tL-t]p=D+D++Dt(1+r)t(1+r)2t+1(1+r)t1+T当r〉0,且红利序列是有界的,则上述极限为:p=£p=£tj=01(1+r)j根据上述运算,可以定义下述算子的逆算子:11-(111-(1+r)L1(1+r)L1

F

(1+r)L1(1+r)2L2§2.6差分方程的求解方法上面我们主要论述了差分方程的表示和外生扰动的动态乘子,下面我们给出差分方程的一般求解过程。第一步:构造p阶齐次差分方程,并且寻求齐次方程的p个解:yh,i=1,2…,pti第二步:构造p阶非齐次差分方程的特解。第三步:齐次方程p个解的线性组合加上非齐次方程的一个特解,得到非齐次方程的通解。第四步:根据给定的边界条件,确实通解当中的未知参数,得到非齐次方程的确定解2.6.1齐次差分方程的通解和稳定性p阶齐次差分方程的形式是:y=^1y1+札y2+…+0yt1t12t2ptp命题2.3对于差分方程而言,下述推断成立:如果yh是方程的解,则对任意常数A,Ayh也是解。tt如果yh和yh是方程的解,则对任意实数A和A,Ayh+Ayh也是方程的解。1t2t1211t22t证明:留做练习。对于p阶齐次差分方程,我们尝试地检验解的形式是:yh=A九t,代入差分方程为:九p—0九p-1—0九p-2—.…一0九一0=012p1p由此可见,九应该是上述特征方程的根。因此,如果差分方程具有相异实数根的时候,可以得到p

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论