专题3 以杨辉三角为背景的题组训练(原卷版)_第1页
专题3 以杨辉三角为背景的题组训练(原卷版)_第2页
专题3 以杨辉三角为背景的题组训练(原卷版)_第3页
专题3 以杨辉三角为背景的题组训练(原卷版)_第4页
专题3 以杨辉三角为背景的题组训练(原卷版)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【高中数学数学文化鉴赏与学习】专题3杨辉三角(以杨辉三角为背景的高中数学考题题组训练)一、单选题1.如图,杨辉三角出现于我国南宋数学家杨辉1261年所著的《详解九章算法》中,它揭示了(n为非负整数)展开式的项数及各项系数的有关规律.由此可得图中第10行排在偶数位置的所有数字之和为(

)A.256 B.512 C.1024 D.10232.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.在由二项式系数所构成的“杨辉三角”中(如图),记第2行的第3个数字为,第3行的第3个数字为,……,第行的第3个数字为则(

)A.165 B.120 C.220 D.963.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就在杨辉三角中,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,……则此数列的前46项和为(

)A.4080 B.2060 C.2048 D.20374.如图所示是一个类似杨辉三角的递推式,则第n行的首尾两个数均为(

)A.2n B. C. D.5.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n行的所有数字之和为,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,……,则此数列的前56项和为(

)A.2060 B.2038 C.4084 D.41086.“杨辉三角”揭示了二项式系数在三角形中的一种几何排列规律,早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如图,在由二项式系数所构成的“杨辉三角”中,若第n行中从左至右只有第12个数为该行中的最大值,则n=(

)A.21 B.22 C.23 D.247.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数1,3,6,10,…构成的数列的第n项,则的值为(

)A.1225 B.1275 C.1326 D.13628.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数,,,,…构成的数列的第项,则的值为(

)A. B. C. D.9.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现.如图所示的杨辉三角中,第8行,第3个数是(

)第0行1第1行11第2行121第3行1331第4行14641……A.21 B.28 C.36 D.5610.下表出现在我国南宋数学家杨辉的著作《详解九章算法》中,称之为“杨辉三角”,该表中第10行第7个数是(

)A.120 B.210 C.84 D.3611.将三项式展开,得到下列等式:广义杨辉三角形第0行

1第1行

1

1

1第2行

1

2

3

2

1第3行

1

3

6

7

6

3

1第4行

1

4

10

16

19

16

10

4

1观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它正上方与左右两肩上的3个数(不足3个数时,缺少的数以0计)之和,第行共有个数.则关于的多项式的展开式中,项的系数(

)A. B.C. D.12.如图所示,在杨辉三角中,斜线AB上方箭头所示的数组成一个锯齿形的数列:1,2,3,3,6,4,10,…,记这个数列的前n项和为,则等于(

)A.144 B.146 C.164 D.46113.“杨辉三角”是中国古代数学文化的瑰宝之一,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.在由二项式系数所构成的“杨辉三角”中(如图),记第2行的第3个数字为,第3行的第3个数字为,…,第行的第3个数字为,则(

)第0行

1第1行

1

1第2行

1

2

1第3行

1

3

3

1第4行

1

4

6

4

1第5行

1

5

10

10

5

1…

…A.220 B.186 C.120 D.9614.南宋数学家杨辉在1261年所著的《详解九章算法》中首次提出“杨辉三角”,这是数学史上的一个伟大的成就,如图所示,在“杨辉三角”中,前n行的数字总和记作.设,将数列中的整数项依次组成新的数列,设数列的前n项和记作,则的值为(

)A.6067 B.5052 C.3048 D.151815.“杨辉三角”是中国古代数学文化的瑰宝之一,最早出现在中国南宋数学家杨辉于1261年所著的《详解九章算法》一书中,法国数学家帕斯卡在1654年才发现这一规律.“杨辉三角”揭示了二项式系数在三角形数表中的一种几何排列规律,如图所示.则下列关于“杨辉三角”的结论正确的是(

)A.B.在第2022行中第1011个数最大C.第6行的第7个数、第7行的第7个数及第8行的第7个数之和等于9行的第8个数D.第34行中第15个数与第16个数之比为2:316.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年.如图所示的是由“杨辉三角”拓展而成的三角形数阵,图中虚线上的数1,3,6,10,…构成数列,记为该数列的第n项,则(

)A.2016 B.4032 C.2020 D.404017.将杨辉三角中的每一个数都换成分数,可得到如图所示的分数三角形,成为“莱布尼茨三角形”,从莱布尼茨三角形可以看出,存在使得,则的值是(

)A. B. C. D.18.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第行的所有数字之和为,若去除所有为1的项,依次构成数列,则此数列的前35项和为(

)A.994 B.995 C.1003 D.100419.“杨辉三角”是中国古代数学杰出的研究成果之一.如图所示,由杨辉三角的左腰上的各数出发,引一组平行线,从上往下每条线上各数之和依次为1,1,2,3,5,8,13,,则下列选项不正确的是(

)A.在第9条斜线上,各数之和为55B.在第条斜线上,各数自左往右先增大后减小C.在第条斜线上,共有个数D.在第11条斜线上,最大的数是20.南宋数学家杨辉在1261年所著的《详解九章算法》中首次提出“杨辉三角”,如图所示,这是数学史上的一个伟大的成就.在“杨辉三角”中,已知每一行的数字之和构成的数列为等比数列且记该数列前项和为,设,将数列中的整数项组成新的数列,则的值为(

)A.5043 B.5047 C.5048 D.5052二、填空题21.杨辉三角在我国南宋数学家杨辉1261年所著的《详解九章算法》一书中被记载.它的开头几行如图所示,它包含了很多有趣的组合数性质,如果将杨辉三角从第1行开始的每一个数都换成分数,得到的三角形称为“莱布尼茨三角形”,莱布尼茨由它得到了很多定理,甚至影响到了微积分的创立,请问“莱布尼茨三角形”第9行第4个数是______.22.“杨辉三角”是中国古代数学杰出的研究成果之一.如图所示,由杨辉三角的左腰上的各数出发引一组平行线,从上往下每条线上各数之和依次为:1,1,2,3,5,8,13,…,则第10条斜线上,各数之和为______.23.“杨辉三角”是二项式系数在三角形中的一种几何排列,如图所示,在“杨辉三角”中,除每行两边的数都是1外,其余每个数都是其“肩上”的两个数之和,例如第4行的6为第3行中两个3的和.若在“杨辉三角”中从第二行右边的1开始按“锯齿形”排列的箭头所指的数依次构成一个数列:1,2,3,3,6,4,10,5,…,则在该数列中,第35项是______.24.杨辉是我国南宋的一位杰出的数学家,在他所著的《详解九章算法》一书中,画的一张表示二项式展开后的系数构成的三角图形,称为“开方做法本源”.现在简称为“杨辉三角”.下图是,当时展开式的二项式系数表示形式.按这个规律,第9行第8个数为________.25.习近平总书记在“十九大”报告中指出:坚定文化自信,推动中华优秀传统文化创造性转化.“杨辉三角”揭示了二项式系数在三角形中的一种几何排列规律,最早在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现,欧洲数学家帕斯卡在1654年才发现这一规律,比杨辉要晚近四百年.“杨辉三角”是中国数学史上的一个伟大成就,激发起一批又一批数学爱好者的探究欲望.如图所示,在由二项式系数所构成的“杨辉三角中,第10行第8个数是______.26.杨辉三角是中国古代数学的杰出研究成果之一,它把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合.如图所示的杨辉三角中,从第3行开始,每一行除1以外,其他每一个数字都是其上一行的左、右两个数字之和,若在杨辉三角中存在某一行,满足该行中有三个相邻的数字之比为4∶5∶6,则这一行是第__________行.第0行

1第1行

1

1第2行

1

2

1第3行

1

3

3

1第4行

1

4

6

4

1第5行

1

5

10

10

5

1第6行1

6

15

20

15

6

127.将杨辉三角中的每一个数都换成,就得到一个如图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,令,则_______.28.杨辉三角,又称帕斯卡三角,是二项式系数在三角形中的一种几何排列.在我国南宋数学家杨辉所著的《详解九章算法》(1261年)一书中用如图所示的三角形解释二项式乘方展开式的系数规律.现把杨辉三角中的数从上到下,从左到右依次排列,得数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,,记作数列.若数列的前n项和为,则=______

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论