范课件by ccerch6需求比较静态分析yandx2p1 p2an_第1页
范课件by ccerch6需求比较静态分析yandx2p1 p2an_第2页
范课件by ccerch6需求比较静态分析yandx2p1 p2an_第3页
范课件by ccerch6需求比较静态分析yandx2p1 p2an_第4页
范课件by ccerch6需求比较静态分析yandx2p1 p2an_第5页
已阅读5页,还剩91页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter

SixDemand需求Properties

of

Demand

FunctionsComparative

statics

analysis

(比较静态分析)of

ordinary

demandfunctions

--

the

study

ofhowordinary

demands

x1*(p1,p2,y)

andx2*(p1,p2,y)

change

as

prices

p1,

p2and e

y

change.StructureOwn-price

changesPrice

offer

curve

(价格提供曲线)Ordinary

demand

curveInverse

demand

curve

(反需求函数)e

changese

offer

curve

(收入提供曲线)Engel

curve

(恩格尔曲线)Cross-price

effectsOwn-Price

ChangesHow

does

x1*(p1,p2,y)

change

as

p1changes,

holding

p2

and

y

constant?Suppose

only

p1

increases,

fromp1’to

p1’’

and

then

top1’’’.x1x2p1x1

+

p2x2

=

yp1

=

p1’Own-Price

ChangesFixed

p2

and

y.x2p1=

p1’’x1Own-Price

ChangesFixed

p2

and

y.p1x1

+

p2x2

=

yp1

=

p1’x1x2p1=

p1’’p1=p1’’’Own-Price

ChangesFixed

p2

and

y.p1x1

+

p2x2

=

yp1

=

p1’x1x1*(p1’)Own-Price

ChangesFixed

p2

and

y.x2p1

=

p1’x1x1*(p1’)p1x1*(p1’)p1’x1*Own-PriceChangesFixed

p2

and

y.x2p1

=

p1’x1x1*(p1’)x1*(p1’’)p1x1*(p1’)p1’x1*Own-PriceChangesFixed

p2

and

y.x2p1

=

p1’’x1x1*(p1’)x1*(p1’’)p1x1*(p1’)x1*(p1’’)x1*Own-PriceChangesFixed

p2

and

y.x2p1’’p1’x1x1*(p1’’’)

x1*(p1’)x1*(p1’’)p1x1*(p1’)x1*(p1’’)x1*Own-PriceChangesFixed

p2

and

y.x2p1

=

p1’’’p1’’p1’x2x1x1*(p1’’’)

x1*(p1’)x1*(p1’’)p1x1*(p1’’’)

x1*(p1’)x1*(p1’’)p1’’p1’p1’’’x1*Own-PriceChangesOrdinarydemand

curvefor

commodity

1Fixed

p2

and

y.x2x1x1*(p1’’’)

x1*(p1’)x1*(p1’’)p1x1*(p1’’’)

x1*(p1’)x1*(p1’’)p1’p1’’p1’’’x1*Own-PriceChangesOrdinarydemand

curvefor

commodity

1p1

priceoffercurveFixed

p2

and

y.Own-Price

ChangesThe

curve

containing

all

the

utility-maximizing

bundles

traced

out

as

p1changes,

with

p2

and

y

constant,isthe

p1-

price

offer

curve.The

plot

of

the

x1-coordinate

of

thep1-

price

offer

curve

against

p1

is

theordinary

demand

curve

forcommodity

1.Own-Price

ChangesWhat

does

a

p1

price-offer

curvelooklike

for

Cobb-Douglas

preferences?U(x1,

x2

)

=

xaxb.1

2Then

the

ordinary

demand

functionsfor

commodities

1

and

2

areTakeOwn-Price

Changesx*(p

,p

,

y)

=1

1

2a

·

yba

+

b

p1yb

p2*x2(p1,p2,

y)

=

a

.andNotice

that

x2*

does

not

vary

with

p1

so

thep1

price

offer

curveis

flat

and

the

ordinarydemand

curve

for

commodity

1

is

arectangular

hyperbola.x1*(p1’’’)

x1*(p1’)x1*(p1’’)x1Own-PriceChangesFixed

p2

and

y.x22x*

=by(a

+

b)p2ay1*x1

=

(a

+

b)px1*(p1’’’)

x1*(p1’)x1*(p1’’)x2x1p1x1*Own-PriceChangesOrdinarydemand

curvefor

commodity

1isFixed

p2

and

y.by2x*

=(a

+

b)p2ay1*x1

=

(a

+

b)pay1x*

=(a

+

b)p1Own-Price

ChangesWhat

does

a

p1

price-offer

curvelooklike

for

a plements

utility

function?U(x1,

x2

)

=

min{x1,

x2}.Then

the

ordinary

demand

functionsfor

commodities

1

and

2

areOwn-Price

Changesy.x*(p

,p

,

y)

=

x*

(p

,p

,

y)

=1

1

2

2

1

2p1+

p2With

p2

and

y

fixed,

higher

p1

causessmaller

x1*

and

x2*.y

.p1

fi

0,

x*

=

x*

fi1

2Asp2As

p1

fi

¥

,

x*

=

x*

fi

0.1

2Own-PriceChangesFixed

p2

and

y.x1x2p1x1*Fixed

p2

and

y.y2x*

=y1x*

=Own-PriceChangesx1p1’y1x*

=p1’+

p2p1

=

p1’p1’+

p2p1’+

p2x2y/p2p1x1*Fixed

p2

and

y.*x2

=yy1x*

=Own-PriceChangesx1p1’p1’’p1

=

p1’’y1x*

=p1’+’p2p1’+’p2p1’+’p2x2y/p2p1x1*Fixed

p2

and

y.y2x*

=y1x*

=Own-PriceChangesx1p1’p1’’p1’’’y1x*

=p1

=

p1’’’p1’+’p’2p1’+’p’2p1’+’p’2x2y/p2p1Ordinarydemand

curvefor

commodity

1isy2x*

=p1

+

p2y1x*

=p1

+

p2y1

2*.x1

=

p+

pOwn-PriceChangesFixed

p2

and

y.x1x2p1’p1’’p1’’’y

x1*p2y/p2Own-Price

ChangesWhat

does

a

p1

price-offer

curvelooklike

for

a

perfect-substitutes

utilityfunction?U(x1,

x2

)

=

x1

+

x2.Then

the

ordinary

demand

functionsfor

commodities

1

and

2

areOwn-Price

Changes1

1

21,

if

p1

>

p2x*(p

,p

,

y)

=

0

y

/

p

2

1

22,

if

p1

<

p2,

if

p1

<

p2,

if

p1

>

p2.x*

(p

,p

,

y)

=

0

y

/

p

andOwn-PriceChangesx2x1Fixed

p2

and

y.2x*

=

0xyp11*=p1

=

p1’

<

p2’Own-PriceChangesx2x1p11x

*Fixed

p2

and

y.2x*

=

0xyp11*=p1’p1

=

p1’

<

p2’xy1*=p1’Own-PriceChangesx2x1p1x1*Fixed

p2

and

y.p1’p1

=

p1’’

=

p2Own-PriceChangesx2x1p1x1*Fixed

p2

and

y.p1’p1

=

p1’’

=

p2Own-PriceChangesx2x1p1x1*Fixed

p2

and

y.2y1x*

=p1’p1

=

p1’’

=

p2p1’’1x*

=

0

x*

=

0

2p2

x*

=

y

Own-PriceChangesx2x1p1x1*Fixed

p2

and

y.2y1p2x*

=p1’p =

p

’’

=

p1

1

21x*

=

0

x*

=

0

2p2

x*

=

y

1p20£

x*

£

y

p2

=

p1’’Own-PriceChangesx2x1p1x1*Fixed

p2

and

y.2p2x*

=

y1x*

=

0p1’p1’’’1x*

=

0p1

=

p1”’

>

p2p2

=

p1’’x2p1x1*Own-PriceChangesFixed

p2

and

y.1p

’p2

=

p1’’p1’’’1p1x*

=

y

2x1y0

£

x1

£

p*yp2p1

priceoffercurveOrdinarydemand

curvefor

commodity

1Own-Price

ChangesUsually

we

ask

“Given

the

price

forcommodity

1

what

is

the

quantitydemanded

of

commodity

1?”But

we

could

also

ask

the

inversequestion

“At

what

price

forcommodity

1

would

a

given

quantityof

commodity

1

be

demanded?”Own-Price

Changesp1x1*p1’Given

p1’,

what

quantity

isdemanded

of

commodity

1?Own-Price

Changesp1x1*p1’Given

p1’,

what

quantity

isdemanded

of

commodity

1?Answer: x1’

units.x1’Own-Price

Changesp1x1*x1’Given

p1’,

what

quantity

isdemanded

of

commodity

1?Answer: x1’

units.The

inverse

question

is:Given

x1’

units

aredemanded,

what

is

theprice

ofcommodity

1?Own-Price

Changesp11x

*p1’x1’Given

p1’,

what

quantity

isdemanded

of

commodity

1?Answer: x1’

units.The

inverse

question

is:Given

x1’

units

aredemanded,

what

is

theprice

ofcommodity

1?1Answer: p

’Own-Price

ChangesTaking

quantity

demanded

as

givenand

then

asking

what

must

be

pricedescribes

the

inverse

demandfunction

of

a

commodity.Own-Price

ChangesA

Cobb-Douglas

example:ay1x*

=(a

+

b)p1is

the

ordinary

demand

function

anday1p1

=(a

+

b)x*is

the

inverse

demand

function.Own-Price

ChangesA plements

example:y1x*

=p1

+

p2is

the

ordinary

demand

function

and1p1

=

y

-

p2x*is

the

inverse

demand

function.Meaning

of

the

Inverse

DemandFunctionAt

optimal

choiceOrIf

taking

good

2

as

money

on

other

goods,then

p2=1

and

p1=MRS.This

is

the

marginal

willingness

to

pay.MRS

=

P1P2P1

=

P2

MRSe

ChangesHow

does

the

value

of

x1*(p1,p2,y)change

as

y

changes,

holding

bothp1

and

p2

constant?x1e

ChangesFixed

p1

and

p2.x2y’

<

y’’

<

y’’’x1e

ChangesFixed

p1

and

p2.x2y’

<

y’’

<

y’’’x1e

ChangesFixed

p1

and

p2.x2y’

<

y’’

<

y’’’x1’

x1’’’x1’’x2’’’x2’’x2’x1e

Changesx1’

x1’’’x1’’Fixed

p1

and

p2.x2y’

<

y’’

<

y’’’eoffer

curvex2’’’x2’’x2’e

ChangesA

plot

of

quantity

demanded

againste

is

called

an

Engel

curve.x1e

Changesx1’

x1’’’x1’’Fixed

p1

and

p2.x2y’

<

y’’

<

y’’’eoffer

curvex2’’’x2’’x2’e

ChangesFixed

p1

and

p2.x2x1’

x1’’’x1’’x2’’’x2’’x2’y’

<

y’’

<

y’’’eoffer

curve1x

*x1’’x1’

x1’’’yy’’’y’’y’x1Engelcurve;good

1x2x1e

ChangesFixed

p1

and

p2.x1’

x1’’’x1’’x

’’’2x2’’x2’y’

<

y’’

<

y’’’eoffer

curvex2*yx2’

x2’’’x2’’y’’’y’’y’Engelcurve;good

2x2e

ChangesFixed

p1

and

p2.x1’

x1’’’x1’’x

’’’2x2’’x2’y’

<

y’’

<

y’’’eoffer

curve1x

*x2*yx1’’x1’

x1’’’x2’

x2’’’x2’’y’’’y’’y’yy’’’y’’y’x1Engelcurve;good

2Engelcurve;good

1e

Changes

and

Cobb-DouglasPreferencesAn

example

of

computing

theequations

of

Engel

curves;

the

Cobb-Douglas

case.U(x1,

x2

)

=

xaxb.1

2The

ordinary

demand

equations

areay

by12x*

=;

x*

=

.(a

+

b)p1

(a

+

b)p2e

Changes

and

Cobb-DouglasPreferencesay

by12.x*

=;

x*

=(a

+

b)p1

(a

+

b)p2Rearranged

to

isolate

y,

these

are:aby

=

(a

+

b)p1

x*1y

=

(a

+

b)p2

x*2Engel

curve

for

good

1Engel

curve

for

good

2e

Changes

and

Cobb-DouglasPreferencesyyx1*x2*ay

=

(a

+

b)p1

x*1Engel

curvefor

good

1by

=

(a

+

b)p2

x*2Engel

curvefor

good

2e

Changes

and

Perfectly-Complementary

Preferencesy.x*

=

x*

=1

2p1

+

p2Another

example

of

computing

theequations

of

Engel

curves;

theplementary

case.U(x1,

x2

)

=

min{x1,

x2}.The

ordinary

demand

equations

aree

Changes

and

Perfectly-Complementary

PreferencesRearranged

to

isolate

y,

these

are:y

=

(p1

+

p2

)x*1y

=

(p1

+

p2

)x*2Engel

curve

for

good

1y.x*

=

x*

=1

2p1

+

p2Engel

curve

for

good

2e

Changesx1Fixed

p1

and

p2.x2e

Changesx1Fixed

p1

and

p2.x2y’

<

y’’

<

y’’’e

Changesx1Fixed

p1

and

p2.x2y’

<

y’’

<

y’’’e

Changesx1x1’’x2’’’x2’’x2’x1’

x1’’’Fixed

p1

and

p2.x2y’

<

y’’

<

y’’’e

Changesx1x1’’x2’’’x2’’x2’x1’

x1’’’x1*y’’’y’’y’Engelcurve;good

1x1’

x1’’’x1’’Fixed

p1

and

p2.x2y’

<

y’’

<

y’’’yx1x1’’x

’’’2x2’’x2’x1’

x1’’’x2*x2’

x2’’’x2’’yy’’’y’’y’Engelcurve;good

2e

ChangesFixed

p1

and

p2.x2y’

<

y’’

<

y’’’x1x1’’x

’’’2x2’’x2’x1’

x1’’’x1*x2*x2’

x2’’’x2’’y’’y’yy’’’yy’’’y’’y’Engelcurve;good

2Engelcurve;good

1x1’

x1’’’x1’’e

ChangesFixed

p1

and

p2.x2y’

<

y’’

<

y’’’x1*x2*x2’

x2’’’x2’’yy’’’y’’y’yy’’’y’’y’x1’

x1’’’x1’’y

=

(p1

+

p2

)x*2*y

=

(p1

+

p2

)x1Engelcurve;good

2Engelcurve;good

1e

ChangesFixed

p1

and

p2.e

Changes

and

Perfectly-Substitutable

PreferencesAnother

example

of

computing

theequations

of

Engel

curves;

theperfectly-substitution

case.U(x1,

x2

)

=

x1

+

x2.The

ordinary

demand

equations

aree

Changes

and

Perfectly-Substitutable

Preferences1

1

21,

if

p1

>

p2x*(p

,p

,

y)

=

0

y

/

p

2

1

22,

if

p1

<

p2,

if

p1

<

p2,

if

p1

>

p2.x*

(p

,p

,

y)

=

0

y

/

p

1

21p12Suppose

p <

p

.

Then

x*

=

y

and

x*

=

021

1y

=

p

x*

and

x*

=

0.e

Changes

and

Perfectly-Substitutable

Preferences2x*

=

0.y

=

p1x1*yyx2*0x1*Engel

curvefor

good

1Engel

curvefor

good

2e

ChangesIn

every

example

so

far

the

Engelcurves

have

all

been

straight

lines?Q:

Is

this

true

in

general?A:

No. Engel

curves

are

straightlines

if

the

consumer’s

preferencesare

homothetic.Homotheticity

(位似偏好)A

consumer’s

preferences

arehomothetic

if

and

onlyifThat

is,

the

consumer’s

MRS

isthesame

anywhere

on

a

straight

linedrawn

from

the

origin.(ky1,ky2)(x1,x2)

(y1,y2)

(kx1,kx2)

for

every

k

>

0.e

Effects

--

A

NonhomotheticExampleQuasilinear

preferences

are

nothomothetic.1

21

2U

(x

,

x

)

=

v(x

)

+

x

.For

example,U(x1,

x2

)

=

x1

+

x2

.Optimal

interior

consumption:12.ppv

'(x1*)

=Quasi-linear

Indifference

Curvesx2x1Each

curve

is

a

vertically

shiftedcopy

of

the

others.Each

curve

intersectsboth

axes.e

Changes;

Quasilinear

Utilityx2x1x1~e

Changes;

Quasilinear

Utilityx2x11x~y1x~Engelcurveforgood

1x1*e

Changes;

Quasilinear

Utilityx2x1x1~yEngelcurveforgood

2x2*e

Changes;

Quasilinear

Utilityx2x11x~yy1x~Engelcurveforgood

2x2*Engelcurveforgood

1x1*e

EffectsA

good

for

which

quantity

demandedrises

with e

is

called

normal

(正常品).Therefore

a

normal

good’s

Engelcurve

is

positively

sloped.e

EffectsA

good

for

which

quantity

demandedfalls

as e

increases

is

called

einferior

(劣质品).Therefore

an e

inferior

good’s

Engelcurve

is

negatively

sloped.x2e

Changes;

Goods1

&

2

Normalx1’

x1’’’x1’’x

’’’2x2’’x2’eoffer

curve1x

*x2*yx1’’x1’

x1’’’x2’

x2’’’x2’’y’’’y’’y’yy’’’y’’y’x1Engelcurve;good

2Engelcurve;good

1e

Changes;

Good

2

Is

Normal,Good

1

es e

Inferiorx1x2eoffer

curvee

Changes;

Good

2

Is

Normal,Good

1

es e

Inferiorx2x1x1*yEngel

curvefor

good

1e

Changes;

Good

2

Is

Normal,Good

1

es e

Inferiorx2x1x1*yyEngel

curvefor

good

2x2*Engel

curvefor

good

1Ordinary

Goods

(一般商品)A

good

is

called

ordinary

if

thequantity

demanded

of

it

alwaysincreases

as

its

own

price

decreases.Ordinary

Goo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论