版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter
SixDemand需求Properties
of
Demand
FunctionsComparative
statics
analysis
(比较静态分析)of
ordinary
demandfunctions
--
the
study
ofhowordinary
demands
x1*(p1,p2,y)
andx2*(p1,p2,y)
change
as
prices
p1,
p2and e
y
change.StructureOwn-price
changesPrice
offer
curve
(价格提供曲线)Ordinary
demand
curveInverse
demand
curve
(反需求函数)e
changese
offer
curve
(收入提供曲线)Engel
curve
(恩格尔曲线)Cross-price
effectsOwn-Price
ChangesHow
does
x1*(p1,p2,y)
change
as
p1changes,
holding
p2
and
y
constant?Suppose
only
p1
increases,
fromp1’to
p1’’
and
then
top1’’’.x1x2p1x1
+
p2x2
=
yp1
=
p1’Own-Price
ChangesFixed
p2
and
y.x2p1=
p1’’x1Own-Price
ChangesFixed
p2
and
y.p1x1
+
p2x2
=
yp1
=
p1’x1x2p1=
p1’’p1=p1’’’Own-Price
ChangesFixed
p2
and
y.p1x1
+
p2x2
=
yp1
=
p1’x1x1*(p1’)Own-Price
ChangesFixed
p2
and
y.x2p1
=
p1’x1x1*(p1’)p1x1*(p1’)p1’x1*Own-PriceChangesFixed
p2
and
y.x2p1
=
p1’x1x1*(p1’)x1*(p1’’)p1x1*(p1’)p1’x1*Own-PriceChangesFixed
p2
and
y.x2p1
=
p1’’x1x1*(p1’)x1*(p1’’)p1x1*(p1’)x1*(p1’’)x1*Own-PriceChangesFixed
p2
and
y.x2p1’’p1’x1x1*(p1’’’)
x1*(p1’)x1*(p1’’)p1x1*(p1’)x1*(p1’’)x1*Own-PriceChangesFixed
p2
and
y.x2p1
=
p1’’’p1’’p1’x2x1x1*(p1’’’)
x1*(p1’)x1*(p1’’)p1x1*(p1’’’)
x1*(p1’)x1*(p1’’)p1’’p1’p1’’’x1*Own-PriceChangesOrdinarydemand
curvefor
commodity
1Fixed
p2
and
y.x2x1x1*(p1’’’)
x1*(p1’)x1*(p1’’)p1x1*(p1’’’)
x1*(p1’)x1*(p1’’)p1’p1’’p1’’’x1*Own-PriceChangesOrdinarydemand
curvefor
commodity
1p1
priceoffercurveFixed
p2
and
y.Own-Price
ChangesThe
curve
containing
all
the
utility-maximizing
bundles
traced
out
as
p1changes,
with
p2
and
y
constant,isthe
p1-
price
offer
curve.The
plot
of
the
x1-coordinate
of
thep1-
price
offer
curve
against
p1
is
theordinary
demand
curve
forcommodity
1.Own-Price
ChangesWhat
does
a
p1
price-offer
curvelooklike
for
Cobb-Douglas
preferences?U(x1,
x2
)
=
xaxb.1
2Then
the
ordinary
demand
functionsfor
commodities
1
and
2
areTakeOwn-Price
Changesx*(p
,p
,
y)
=1
1
2a
·
yba
+
b
p1yb
p2*x2(p1,p2,
y)
=
a
+·
.andNotice
that
x2*
does
not
vary
with
p1
so
thep1
price
offer
curveis
flat
and
the
ordinarydemand
curve
for
commodity
1
is
arectangular
hyperbola.x1*(p1’’’)
x1*(p1’)x1*(p1’’)x1Own-PriceChangesFixed
p2
and
y.x22x*
=by(a
+
b)p2ay1*x1
=
(a
+
b)px1*(p1’’’)
x1*(p1’)x1*(p1’’)x2x1p1x1*Own-PriceChangesOrdinarydemand
curvefor
commodity
1isFixed
p2
and
y.by2x*
=(a
+
b)p2ay1*x1
=
(a
+
b)pay1x*
=(a
+
b)p1Own-Price
ChangesWhat
does
a
p1
price-offer
curvelooklike
for
a plements
utility
function?U(x1,
x2
)
=
min{x1,
x2}.Then
the
ordinary
demand
functionsfor
commodities
1
and
2
areOwn-Price
Changesy.x*(p
,p
,
y)
=
x*
(p
,p
,
y)
=1
1
2
2
1
2p1+
p2With
p2
and
y
fixed,
higher
p1
causessmaller
x1*
and
x2*.y
.p1
fi
0,
x*
=
x*
fi1
2Asp2As
p1
fi
¥
,
x*
=
x*
fi
0.1
2Own-PriceChangesFixed
p2
and
y.x1x2p1x1*Fixed
p2
and
y.y2x*
=y1x*
=Own-PriceChangesx1p1’y1x*
=p1’+
p2p1
=
p1’p1’+
p2p1’+
p2x2y/p2p1x1*Fixed
p2
and
y.*x2
=yy1x*
=Own-PriceChangesx1p1’p1’’p1
=
p1’’y1x*
=p1’+’p2p1’+’p2p1’+’p2x2y/p2p1x1*Fixed
p2
and
y.y2x*
=y1x*
=Own-PriceChangesx1p1’p1’’p1’’’y1x*
=p1
=
p1’’’p1’+’p’2p1’+’p’2p1’+’p’2x2y/p2p1Ordinarydemand
curvefor
commodity
1isy2x*
=p1
+
p2y1x*
=p1
+
p2y1
2*.x1
=
p+
pOwn-PriceChangesFixed
p2
and
y.x1x2p1’p1’’p1’’’y
x1*p2y/p2Own-Price
ChangesWhat
does
a
p1
price-offer
curvelooklike
for
a
perfect-substitutes
utilityfunction?U(x1,
x2
)
=
x1
+
x2.Then
the
ordinary
demand
functionsfor
commodities
1
and
2
areOwn-Price
Changes1
1
21,
if
p1
>
p2x*(p
,p
,
y)
=
0
y
/
p
2
1
22,
if
p1
<
p2,
if
p1
<
p2,
if
p1
>
p2.x*
(p
,p
,
y)
=
0
y
/
p
andOwn-PriceChangesx2x1Fixed
p2
and
y.2x*
=
0xyp11*=p1
=
p1’
<
p2’Own-PriceChangesx2x1p11x
*Fixed
p2
and
y.2x*
=
0xyp11*=p1’p1
=
p1’
<
p2’xy1*=p1’Own-PriceChangesx2x1p1x1*Fixed
p2
and
y.p1’p1
=
p1’’
=
p2Own-PriceChangesx2x1p1x1*Fixed
p2
and
y.p1’p1
=
p1’’
=
p2Own-PriceChangesx2x1p1x1*Fixed
p2
and
y.2y1x*
=p1’p1
=
p1’’
=
p2p1’’1x*
=
0
x*
=
0
2p2
x*
=
y
Own-PriceChangesx2x1p1x1*Fixed
p2
and
y.2y1p2x*
=p1’p =
p
’’
=
p1
1
21x*
=
0
x*
=
0
2p2
x*
=
y
1p20£
x*
£
y
p2
=
p1’’Own-PriceChangesx2x1p1x1*Fixed
p2
and
y.2p2x*
=
y1x*
=
0p1’p1’’’1x*
=
0p1
=
p1”’
>
p2p2
=
p1’’x2p1x1*Own-PriceChangesFixed
p2
and
y.1p
’p2
=
p1’’p1’’’1p1x*
=
y
2x1y0
£
x1
£
p*yp2p1
priceoffercurveOrdinarydemand
curvefor
commodity
1Own-Price
ChangesUsually
we
ask
“Given
the
price
forcommodity
1
what
is
the
quantitydemanded
of
commodity
1?”But
we
could
also
ask
the
inversequestion
“At
what
price
forcommodity
1
would
a
given
quantityof
commodity
1
be
demanded?”Own-Price
Changesp1x1*p1’Given
p1’,
what
quantity
isdemanded
of
commodity
1?Own-Price
Changesp1x1*p1’Given
p1’,
what
quantity
isdemanded
of
commodity
1?Answer: x1’
units.x1’Own-Price
Changesp1x1*x1’Given
p1’,
what
quantity
isdemanded
of
commodity
1?Answer: x1’
units.The
inverse
question
is:Given
x1’
units
aredemanded,
what
is
theprice
ofcommodity
1?Own-Price
Changesp11x
*p1’x1’Given
p1’,
what
quantity
isdemanded
of
commodity
1?Answer: x1’
units.The
inverse
question
is:Given
x1’
units
aredemanded,
what
is
theprice
ofcommodity
1?1Answer: p
’Own-Price
ChangesTaking
quantity
demanded
as
givenand
then
asking
what
must
be
pricedescribes
the
inverse
demandfunction
of
a
commodity.Own-Price
ChangesA
Cobb-Douglas
example:ay1x*
=(a
+
b)p1is
the
ordinary
demand
function
anday1p1
=(a
+
b)x*is
the
inverse
demand
function.Own-Price
ChangesA plements
example:y1x*
=p1
+
p2is
the
ordinary
demand
function
and1p1
=
y
-
p2x*is
the
inverse
demand
function.Meaning
of
the
Inverse
DemandFunctionAt
optimal
choiceOrIf
taking
good
2
as
money
on
other
goods,then
p2=1
and
p1=MRS.This
is
the
marginal
willingness
to
pay.MRS
=
P1P2P1
=
P2
MRSe
ChangesHow
does
the
value
of
x1*(p1,p2,y)change
as
y
changes,
holding
bothp1
and
p2
constant?x1e
ChangesFixed
p1
and
p2.x2y’
<
y’’
<
y’’’x1e
ChangesFixed
p1
and
p2.x2y’
<
y’’
<
y’’’x1e
ChangesFixed
p1
and
p2.x2y’
<
y’’
<
y’’’x1’
x1’’’x1’’x2’’’x2’’x2’x1e
Changesx1’
x1’’’x1’’Fixed
p1
and
p2.x2y’
<
y’’
<
y’’’eoffer
curvex2’’’x2’’x2’e
ChangesA
plot
of
quantity
demanded
againste
is
called
an
Engel
curve.x1e
Changesx1’
x1’’’x1’’Fixed
p1
and
p2.x2y’
<
y’’
<
y’’’eoffer
curvex2’’’x2’’x2’e
ChangesFixed
p1
and
p2.x2x1’
x1’’’x1’’x2’’’x2’’x2’y’
<
y’’
<
y’’’eoffer
curve1x
*x1’’x1’
x1’’’yy’’’y’’y’x1Engelcurve;good
1x2x1e
ChangesFixed
p1
and
p2.x1’
x1’’’x1’’x
’’’2x2’’x2’y’
<
y’’
<
y’’’eoffer
curvex2*yx2’
x2’’’x2’’y’’’y’’y’Engelcurve;good
2x2e
ChangesFixed
p1
and
p2.x1’
x1’’’x1’’x
’’’2x2’’x2’y’
<
y’’
<
y’’’eoffer
curve1x
*x2*yx1’’x1’
x1’’’x2’
x2’’’x2’’y’’’y’’y’yy’’’y’’y’x1Engelcurve;good
2Engelcurve;good
1e
Changes
and
Cobb-DouglasPreferencesAn
example
of
computing
theequations
of
Engel
curves;
the
Cobb-Douglas
case.U(x1,
x2
)
=
xaxb.1
2The
ordinary
demand
equations
areay
by12x*
=;
x*
=
.(a
+
b)p1
(a
+
b)p2e
Changes
and
Cobb-DouglasPreferencesay
by12.x*
=;
x*
=(a
+
b)p1
(a
+
b)p2Rearranged
to
isolate
y,
these
are:aby
=
(a
+
b)p1
x*1y
=
(a
+
b)p2
x*2Engel
curve
for
good
1Engel
curve
for
good
2e
Changes
and
Cobb-DouglasPreferencesyyx1*x2*ay
=
(a
+
b)p1
x*1Engel
curvefor
good
1by
=
(a
+
b)p2
x*2Engel
curvefor
good
2e
Changes
and
Perfectly-Complementary
Preferencesy.x*
=
x*
=1
2p1
+
p2Another
example
of
computing
theequations
of
Engel
curves;
theplementary
case.U(x1,
x2
)
=
min{x1,
x2}.The
ordinary
demand
equations
aree
Changes
and
Perfectly-Complementary
PreferencesRearranged
to
isolate
y,
these
are:y
=
(p1
+
p2
)x*1y
=
(p1
+
p2
)x*2Engel
curve
for
good
1y.x*
=
x*
=1
2p1
+
p2Engel
curve
for
good
2e
Changesx1Fixed
p1
and
p2.x2e
Changesx1Fixed
p1
and
p2.x2y’
<
y’’
<
y’’’e
Changesx1Fixed
p1
and
p2.x2y’
<
y’’
<
y’’’e
Changesx1x1’’x2’’’x2’’x2’x1’
x1’’’Fixed
p1
and
p2.x2y’
<
y’’
<
y’’’e
Changesx1x1’’x2’’’x2’’x2’x1’
x1’’’x1*y’’’y’’y’Engelcurve;good
1x1’
x1’’’x1’’Fixed
p1
and
p2.x2y’
<
y’’
<
y’’’yx1x1’’x
’’’2x2’’x2’x1’
x1’’’x2*x2’
x2’’’x2’’yy’’’y’’y’Engelcurve;good
2e
ChangesFixed
p1
and
p2.x2y’
<
y’’
<
y’’’x1x1’’x
’’’2x2’’x2’x1’
x1’’’x1*x2*x2’
x2’’’x2’’y’’y’yy’’’yy’’’y’’y’Engelcurve;good
2Engelcurve;good
1x1’
x1’’’x1’’e
ChangesFixed
p1
and
p2.x2y’
<
y’’
<
y’’’x1*x2*x2’
x2’’’x2’’yy’’’y’’y’yy’’’y’’y’x1’
x1’’’x1’’y
=
(p1
+
p2
)x*2*y
=
(p1
+
p2
)x1Engelcurve;good
2Engelcurve;good
1e
ChangesFixed
p1
and
p2.e
Changes
and
Perfectly-Substitutable
PreferencesAnother
example
of
computing
theequations
of
Engel
curves;
theperfectly-substitution
case.U(x1,
x2
)
=
x1
+
x2.The
ordinary
demand
equations
aree
Changes
and
Perfectly-Substitutable
Preferences1
1
21,
if
p1
>
p2x*(p
,p
,
y)
=
0
y
/
p
2
1
22,
if
p1
<
p2,
if
p1
<
p2,
if
p1
>
p2.x*
(p
,p
,
y)
=
0
y
/
p
1
21p12Suppose
p <
p
.
Then
x*
=
y
and
x*
=
021
1y
=
p
x*
and
x*
=
0.e
Changes
and
Perfectly-Substitutable
Preferences2x*
=
0.y
=
p1x1*yyx2*0x1*Engel
curvefor
good
1Engel
curvefor
good
2e
ChangesIn
every
example
so
far
the
Engelcurves
have
all
been
straight
lines?Q:
Is
this
true
in
general?A:
No. Engel
curves
are
straightlines
if
the
consumer’s
preferencesare
homothetic.Homotheticity
(位似偏好)A
consumer’s
preferences
arehomothetic
if
and
onlyifThat
is,
the
consumer’s
MRS
isthesame
anywhere
on
a
straight
linedrawn
from
the
origin.(ky1,ky2)(x1,x2)
(y1,y2)
(kx1,kx2)
for
every
k
>
0.e
Effects
--
A
NonhomotheticExampleQuasilinear
preferences
are
nothomothetic.1
21
2U
(x
,
x
)
=
v(x
)
+
x
.For
example,U(x1,
x2
)
=
x1
+
x2
.Optimal
interior
consumption:12.ppv
'(x1*)
=Quasi-linear
Indifference
Curvesx2x1Each
curve
is
a
vertically
shiftedcopy
of
the
others.Each
curve
intersectsboth
axes.e
Changes;
Quasilinear
Utilityx2x1x1~e
Changes;
Quasilinear
Utilityx2x11x~y1x~Engelcurveforgood
1x1*e
Changes;
Quasilinear
Utilityx2x1x1~yEngelcurveforgood
2x2*e
Changes;
Quasilinear
Utilityx2x11x~yy1x~Engelcurveforgood
2x2*Engelcurveforgood
1x1*e
EffectsA
good
for
which
quantity
demandedrises
with e
is
called
normal
(正常品).Therefore
a
normal
good’s
Engelcurve
is
positively
sloped.e
EffectsA
good
for
which
quantity
demandedfalls
as e
increases
is
called
einferior
(劣质品).Therefore
an e
inferior
good’s
Engelcurve
is
negatively
sloped.x2e
Changes;
Goods1
&
2
Normalx1’
x1’’’x1’’x
’’’2x2’’x2’eoffer
curve1x
*x2*yx1’’x1’
x1’’’x2’
x2’’’x2’’y’’’y’’y’yy’’’y’’y’x1Engelcurve;good
2Engelcurve;good
1e
Changes;
Good
2
Is
Normal,Good
1
es e
Inferiorx1x2eoffer
curvee
Changes;
Good
2
Is
Normal,Good
1
es e
Inferiorx2x1x1*yEngel
curvefor
good
1e
Changes;
Good
2
Is
Normal,Good
1
es e
Inferiorx2x1x1*yyEngel
curvefor
good
2x2*Engel
curvefor
good
1Ordinary
Goods
(一般商品)A
good
is
called
ordinary
if
thequantity
demanded
of
it
alwaysincreases
as
its
own
price
decreases.Ordinary
Goo
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《基础化学综合实验A》教学大纲
- 幼儿园0的意义课件
- 交通工程设施设计教案
- 玉溪师范学院《网络思想政治教育》2022-2023学年第一学期期末试卷
- 玉溪师范学院《商务谈判》2022-2023学年第一学期期末试卷
- 玉溪师范学院《篮球主项》2021-2022学年第一学期期末试卷
- 房地产营销策划 -雅安国际旅游度假区 2023-2024年度系列营销活动策划方案
- 2023年水路货物运输服务项目评估分析报告
- 2019湘美版 高中美术 选择性必修6 现代媒体艺术《第一单元 摄影》大单元整体教学设计2020课标
- 2024届河北省定州市全国统一招生高考押题卷数学试题(一)
- 车辆工程基础知识单选题100道及答案解析
- 2024-2030年中国天然蜂蜜市场竞争状况与盈利前景预测报告
- 文书模板-《企业防静电方案》
- 油气田开发工程车辆租赁合同
- 中国厨房电器行业消费态势及销售状况分析研究报告(2024-2030版)
- 冬季施工恶劣天气应急预案
- 2024年安徽省投资集团控股限公司社会招聘高频难、易错点练习500题附带答案详解
- 海南省海口市海南省华侨中学2024-2025年八年级上期中考试物理试题(含答案)
- 《江西二年级数学上学期期中试卷全解析》
- 《汉字输入一点通》课件
- 除颤技术(除颤仪的使用)
评论
0/150
提交评论