初一数学一元一次方程应用题的各种类型_第1页
初一数学一元一次方程应用题的各种类型_第2页
初一数学一元一次方程应用题的各种类型_第3页
初一数学一元一次方程应用题的各种类型_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

..初一数学一元一次方程应用题的各种类型一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其根本关系是:路程=时间×速度〔一〕相遇问题的等量关系:甲行距离+乙行距离=总路程〔二〕追击问题的等量关系:〔1〕同时不同地:慢者行的距离+两者之间的距离=快者行的距离〔2〕同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间〔三〕环形跑道常用等量关系:〔1〕同时同向出发:快的走的路程-环行跑道周长=慢的走的路程〔第一次相遇)〔2〕同时反向出发:甲走的路程+乙走的路程=环行周长〔第一次相遇〕〔四〕航行问题常用的等量关系:〔1〕顺水速度=静水速度+水流速度〔2〕逆水速度=静水速度-水流速度〔3〕顺速–逆速=2水速;顺速+逆速=2船速〔4〕顺水的路程=逆水的路程例题1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1〕两列火车同时相向而行,多少时间可以相遇?2〕两车同时反向而行,几小时后两车相距270公里?3〕假设两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4〕假设两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇"5〕两车同时同向而行〔快车在后面〕,几小时后快车可以追上慢车?6〕两车同时同向而行〔慢车在后面〕,几小时后两车相距200公里?例题2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟把命令传到达该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间完成任务?练习:1、小明每天早上要在7:20之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。问:〔1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远"2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。如果2人从同一地点同向而行,那么经过20分钟两人相遇。如果甲的速度比乙的速度快,求两人散步的速度?二、工程问题小学时学习过工程问题,在工程问题中涉及三个量:工作量、工作效率与工作时间,它们之间存在怎样的关系"工作量=工作效率×工作时间或或。2、各队合作工作效率=各队工作效率之和3、全部工作量之和=各队工作量之和例1、要修一条公路,甲队单独修12天完成,乙队工作效率是甲队的2倍。现在甲先修2天,剩下的由甲、乙合修,问还要几天可修完这条路的。例2整理一批图书,由一个人做要40小时完成.现在方案由一局部先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率一样,具体应先安排多少人工作"练习:1、有一个蓄水池,装有甲、乙、丙三个进水管,单独开甲管,6分钟可注满空水池;单独开乙管,12分钟可注满空水池;单独开丙管,18分钟可注满空水池,如果甲、乙先齐开3分钟,然后由乙、丙齐开,需几分钟可注满空水池?2、一项工程,甲队单独做需要10天完成,乙队单独做需要20天完成,两队同时工作3天后,乙队采用新技术,工作效率提高了25%,自乙队采用新技术后,两队还需要同时工作多少天才能完成这项工程"

一部稿件,甲打字员单独打20小时可以完成,甲、乙两打字员合打,12小时可以完成。现在由两人合打7小时,余下局部由乙完成,还需多少小时?某公司须制作一块户外广告牌,请来师徒二人,师傅单独完成需4天,徒弟完成需6天,答复以下问题:师徒合作需要几天完成?现由徒弟先做一天,在两人合作,完成后共得报酬450元,如果按各人完成的工作量计算报酬,那么该如何分配呢

三、分配问题:例1:假设干本书分给某班同学,如果每人6本那么余18本,如果每人7本那么缺24本,这个有多少人"书有多少本"例2:现有一堆苹果,分给假设干个小朋友,每人分4个,最后剩下2个;假设每人分5个,那么缺3个。问小朋友有多少人?苹果有多少个?例3:某旅行团到达某一住处,如果安排3人住一间,那么有10人无法安排;如果安排4人住一间,那么空2床,问该旅行团一共有多少人?一共有多少间房间?练习:1、用假设干辆汽车装运一批货物,如果每辆装3.5吨货物,那么这批货物还有2吨不能运走;如果每辆装4吨货物,那么装完这批货物后,还可以装1吨其他货物,那么汽车有多少辆?这批货物有多少吨?2、某人承包了一项零件加工任务,限期完成,假设他每天生产13个,那么到期时还差20个零件;假设他每天生产16个,那么到期时还能多做16个零件,那么生产期限是多少天?承包加工的零件有多少个?3、某学校组织春游,如果单独租用45座客车假设干辆,刚好做满;如果单独租用60座客车假设干辆,那么可少租1辆,且余30个座位,该校有多少个学生?如何租车?四、配套问题1、一方桌由1个桌面、4条桌腿组成,如果1立方米木料可以做方桌的桌面50个或做桌腿300条,现有5立方米木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配成多少方桌?2、某车间有28名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套"3、某服装厂要生产某种型号的学生校服,3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套"4、某车间有工有34人,平均每人每天可加工大齿轮16个或小齿轮10个,又知2个大齿轮与3个小齿轮配成一套,要使每天生产的大小齿轮刚好配套,怎样分配工人?5、有群鸽子和一些鸽笼6只鸽子,那么剩余3只鸽子无鸽笼可住,如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子,原有多少只鸽子和多少个鸽笼?6、有一些一样的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中有50㎡墙面未来得及刷;同样时间5名二级技工粉刷了10个房间之外,还多刷了40㎡墙面,每名一级技工比二级技工一天多粉刷10㎡墙面,求每个房间需要粉刷的墙面面积?五、销售问题:〔1〕利润=售价〔成交价〕-进价〔本钱价〕〔2〕利润率=×100%或。〔3〕商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.例1:某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25﹪,另一件亏损25﹪,卖这两件衣服总的是盈利还是亏损,或是不盈不亏"例2、某种商品零售价为每件900元,为了适应市场竞争,商店决定按售价9折降价并让利48元销售,仍可获利20%,那么这种商品进货价是每件多少元?练习:1、某商品每件的售价是192元,销售利润是60%,那么该商品每件的进价多少元?2、某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个赔本20%.这次交易中的盈亏情况?3、某商场为减少库存积压,以每件120元的价格出售两件夹克上衣,其中一件赚20%,另一件亏20%,在这次买卖中商场是盈利还是亏损,或是不盈不亏?六、方案设计问题:例1、滨州市为鼓励市民节约用水,作出如下规定:用水量收费不超过10m1.5元/m超过10m以上的局部2.00元/m刚家11月份缴水费31元,他家11月实际用水多少m"例2、某地拨号入网有两种收费方式,用户可任选一种:A、计时制:3元/时;B、包月制:50元/月〔限一部个人住宅入网〕.此外,每一种上网方式都得加通讯费1.2元/时.〔1〕某用户某月的上网时间为x小时,请写出两种收费方式下该用户应该支付的费用:A、计时制:B、包月制:〔2〕一个月上网时间为多少小时,两种上网方式的费用一样?练习1、某市移动通讯公司开设了两种通讯业务:"全球通〞使用者先缴50元月根底费,然后每通话1分钟,再付费0.2元;"神州行〞不缴月根底费,每通话1分钟需付话费0.4元〔这里均指市〕.假设一个月通话x分钟.〔1〕一个月通话多少分钟,两种通话方式的费用一样?〔2〕假设某人预计一个月使用话费120元,那么应选择哪一种通话方式较合算?练习2、某工厂生产某种产品,每件产品的出厂价为50元,其本钱价为25元,因为在生产过程中,平均每生产一件产品有0.5米污水排出,为了净化环境,工厂设计了两种处理污水的方案。方案一:工厂污水先净化处理后再排出,每处理1米污水所用的原料费为2元,并且每月排污设备损耗为30000元;方案二:工厂将污水排到污水厂统一处理,每处理1米污水需付14元的排污费。请问:每月生产多少件产品时,工厂选择这两种方案的纯利润一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论