七年级数学下册期末几何综合题专项复习练习题_第1页
七年级数学下册期末几何综合题专项复习练习题_第2页
七年级数学下册期末几何综合题专项复习练习题_第3页
七年级数学下册期末几何综合题专项复习练习题_第4页
七年级数学下册期末几何综合题专项复习练习题_第5页
已阅读5页,还剩5页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020-2021学年度七年级数学下册期末几何综合题专项复习练习题1、如图,已知AB∥CD,DA平分∠BDC,∠A=∠C.(1)试说明:CE∥AD;(2)若∠C=30°,求∠B的度数.2、已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.3、已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC≌△DEF.4、如图,已知E是AB上的点,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.5、如图,已知△ABC和△FED的边BC和ED在同一直线上,BD=CE,点A,F在直线BE的两侧.AB∥EF,∠A=∠F.判断AC与FD的数量关系和位置关系,并说明理由.6、已知:如图,AD是∠CAB的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.7、如图,△ABC中,∠ACB=90°,AC=BC,AE⊥CD于E,BD⊥CD于D,AE=5cm,BD=2cm,(1)求证:△AEC≌△CDB;(2)求DE的长.8、已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.(1)若BD⊥AC,CF⊥AB,如图1所示,试说明∠BAC+∠BEC=180°;(2)若BD平分∠ABC,CF平分∠ACB,如图2所示,试说明此时∠BAC与∠BEC的数量关系;(3)在(2)的条件下,若∠BAC=60°,试说明:EF=ED.9、如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.10、如图,在△ABC中,AB=AC,D,E,F分别在三边上,且BE=CD,BD=CF,G为EF的中点.(1)若∠A=40°,求∠B的度数;(2)试说明:DG垂直平分EF.11、如图,直线AB与CD相交于点O,∠AOM=90°.(1)如图1,若射线OC平分∠AOM,求∠AOD的度数;(2)如图2,若∠BOC=4∠NOB,且射线OM平分∠NOC,求∠MON的度数.12、如图,两条射线AM∥BN,线段CD的两个端点C、D分别在射线BN、AM上,且∠A=∠BCD=108°.E是线段AD上一点(不与点A、D重合),且BD平分∠EBC.(1)求∠ABC的度数.(2)请在图中找出与∠ABC相等的角,并说明理由.(3)若平行移动CD,且AD>CD,则∠ADB与∠AEB的度数之比是否随着CD位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.13、如图1,在△ABC中,∠BAC=90°,AB=AC,过点A作直线DE,且满足BD⊥DE于点D,CE⊥DE于点E,当B,C在直线DE的同侧时,(1)求证:DE=BD+CE.(2)如果上面条件不变,当B,C在直线DE的异侧时,如图2,问BD、DE、CE之间的数量关系如何?写出结论并证明.(3)如果上面条件不变,当B,C在直线DE的异侧时,如图3,问BD、DE、CE之间的数量关系如何?写出结论并证明.14、如图1,在△ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,点D是直线MN上一点,不与点A重合.(1)若点E是图1中线段AB上一点,且DE=DA,请判断线段DE与DA的位置关系,并说明理由;(2)请在下面的A,B两题中任选一题解答.A:如图2,在(1)的条件下,连接BD,过点D作DP⊥DB交线段AC于点P,请判断线段DB与DP的数量关系,并说明理由;B:如图3,在图1的基础上,改变点D的位置后,连接BD,过点D作DP⊥DB交线段CA的延长线于点P,请判断线段DB与DP的数量关系,并说明理由.我选择:.15、乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧.点C是直线l1上一点,在同一平面内,乐乐他们把一个等腰直角三角板ABC任意放,其中直角顶点C与点C重合,过点A作直线l2⊥l1,垂足为点M,过点B作l3⊥l1,垂足为点N.(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系(不必说明理由).(2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量系,并说明理由;(3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,AM,MN之间的数量关系.16、在中,,射线,点在射线上(不与点重合),连接,过点作的垂线交的延长线于点.(1)如图①,若,且,求的度数;(2)如图②,若,当点在射线上运动时,与之间有怎样的数量关系?请写出你的结论,并加以证明.(3)如图③,在(2)的条件下,连接,设与射线的交点为,,,当点在射线上运动时,与之间有怎样的数量关系?请写出你的结论,并加以证明.17、数学课上老师让同学利用三角形纸片进行操作活动,探究有关线段之间的关系问题情境:如图1,三角形纸片ABC中,∠ACB=90°,AC=BC,将点C放在直线l上,点A,B位于直线l的同侧,过点A作AD⊥l于点D.初步探究(1)在图1的直线l上取点E,使得BE=BC得到图2,猜想线段CE与AD的数量关系,并说明理由;变式拓展:(2)小颖又拿了一张三角形纸片MPN继续进行拼图操作,其中∠MPN=90°,MP=NP,小颖在图1的基础上.将三角形纸片MPN的顶点P放在直线l上,点M与B重合,过点N作NH⊥l于点H.请从下面AB两题中任选一题作答,我选择题A.如图3,当点N与点M在直线l的异侧时,探究此时线段CP,AD,NH之间的数量关系,并说明理由.B.如图4,当点N与点M在直线l的同侧,且点P在线段CD的中点时,探究此时线段CD,AD,NH之间的数量关系,并说明理由.18、阅读下列材料,完成相应的任务:全等四边形根据全等图形的定义可知:四条边分别相等、四个角也分别相等的两个四边形全等.在“探索三角形全等的条件”时,我们把两个三角形中“一条边相等”或“一个角相等”称为一个条件.智慧小组的同学类比“探索三角形全等条件”的方法探索“四边形全等的条件”,进行了如下思考:如图1,四边形ABCD和四边形A'B'C'D'中,连接对角线AC,A'C',这样两个四边形全等的问题就转化为“△ABC≌△A'B'C'”与“△ACD≌△A'C'D'”的问题.若先给定ABC≌△A'B'C'的条件,只要再增加2个条件使“△ACD≌△A'C'D'”即可推出两个四边形中“四条边分别相等、四个角也分别相等”,从而说明两个四边形全等.按照智慧小组的思路,小明对图1中的四边形ABCD与四边形A'B'C'D'先给出如下条件:AB=A'B',∠B=∠B′,BC=B'C'.小亮在此基础上又给出“AD=A'D',CD=C'D'”两个条件,他们认为满足这五个条件能得到“四边形ABCD≌四边形A'B'C'D'(1)请根据小明和小亮给出的条件,说明“四边形ABCD≌四边形A'B'C'D'的理由:(2)请从下面A,B两题中任选一题作答,我选择题.A.在材料中“小明所给条件”的基础上,小颖又给出两个条件“

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论