完整版计算机视觉综述_第1页
完整版计算机视觉综述_第2页
完整版计算机视觉综述_第3页
完整版计算机视觉综述_第4页
完整版计算机视觉综述_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(完整word版)计算机视觉综述计算机视觉课程名称:^计算机视觉课程名称:^计算机视觉号:姓名:指导教师:二。一四年五月(完整word版)计算机视觉综述基于直方图的图像阈值分割技术综述1引言图像分割就是把图像分成一些具有不同特征而有意义的区域,以便进一步的图像分析和理解。图像分割是众多图像处理和计算机视觉系统的重要组成部分,图像分割问题是图像处理与分析中的一个基本问题.图像分割需要将输入图像划分成两个或者多个子区域,这正是设计和实现医学图像分析、文本字符识别、目标自动获取等系统所面临的首要任务。由于图像分割问题的重要性和基础性,国内外学者历来对其高度重视,并提出了众多解决方法.阈值分割技术是一种非常流行的图像分割方法,它以图像直方图信息为主导,具备原理清晰、表述简单、运算快捷、效果良好等优点,因此一直受到研究人员的青睐,在实际应用场合中尤为明显.从本质上看,阈值分割方法基本上可以分为六大类[1:基于熵的方法(entropy-basedmethods)基于聚类的方法(clustering-basedmethods)基于直方图形态的方法(histogram-shapebased methods)基于目标属性的方法(objectattribute—basedmethods)空间方法(spatialmethods)局部方法(localmethods)而基于直方图的阈值分割技术是应用最为广泛的一种方法按照维数分可以分为基于一维直方图和基于高维直方图(如二维和三维直方图),早期的阈值分割技术通常基于灰度直方图(也称一维直方图)选取目标函数,对许多图像难以进行较好的分割。随着研究的深入,国内外学者不断基于高维直方图(例如二维直方图和三维直方图)提出一些新的分割方法。而在这些技术中,熵阈值法和Otsu阈值法(也称最小类内方差法或最大类间方差法)是应用最广的两种方法。它们阐释了阈值分割的本质:先给出各种各样合理的目标函数再最大化或最小化该目标函数来得到最佳分割阈值。(完整word版)计算机视觉综述2基于一维直方图的阈值分割技术2。1经典国度直方图阈值分割方法经典的图像分割算法[2]诸如:直方图分割与阈值分割的方法具有实现简单、计算量小、性能较稳定等特点。通常,它们是利用图像的灰度直方图的分布特征,找出灰度直方图分布的两波峰之间的波谷,选定恰当的阈值将图像分割开,然而这种分割方法依赖于图像灰度的分布,对灰度分布不呈双峰特征或复杂背景的图像,往往会造成错误分割.利用图像灰度直方图的特性确定分割阈值方法的原理是如果图像所包括的背景区域与所分的目标区域大小可比,而且两者在灰度上有着明显的区别,那么这样的图像的灰度直方图就会呈现很明显的双峰状。这样,其中一个峰值对应的是背景区域的灰度;而另一个峰值就对应的目标灰度了。理想的中的图像的灰度直方图,其背景灰度和目标灰度应对应两个不同的灰度峰值,所以选取位于两峰之间的谷值作为阈值,就很快地将一幅图像的背景与目标分割开了如图1〜3所示图1原始灰度图像图2图像灰度直方图(完整word版)计算机视觉综述图3图3分割后的图像。1经典分割方法的不足经典直方图阈值分割方法的优点在于实现简单,但是这只是针对少数不同类别物体彼此灰度相差很大时,才能进行有效的分割.当原始图像的灰度直方图的双峰不明显时,分割后得不到理想的图像。图4是原始Lena图像,图5是利用传统灰度直方图阈值分割结果.从图6可以看出在部分区域(如脸部、右边背景)分割效果较好,但是部分区域的细节部分(如帽子、头发等)未能将图像边界完整分割开来.图5灰度直方图图图5灰度直方图图4原始灰度图像(完整word版)计算机视觉综述图6分割后的图像otsu阈值分割方法2。2.1经典otsu法Otsu阈值法又称为最大类间方差法,是由Otsu提出的。它将图像中的目标和背景分为两类,根据选择的阈值计算两类之间的方差,方差越大说明类间的差别越大,从而分割效果也就越好。由于Otsu阈值法进行图像分割,算法简单,稳定,能够自动的进行阈值选择,因此被广泛的应用在图像处理中。设一幅图像X具有L个灰度级(0,1,2,…,L—1),统计每个灰度值的像素点的频数ni,构造频数直方图。计算总的像素点的个数1^二与'-J。计算每个灰度值出现的概率:Pi=ni/N二"?'=1 (1)对于每个分割的阈值点t,假设把图像分成两类:目标和背景。计算[0,1,…,t]和[t+1,...,L-1]两者之间的方差6.首先计算整幅图像的均值ut二二二:",目标和背景的均值分别为u0」/「和u1=三;七,目标和背景出现的概率为w0二二二/咪口w1二三 户对于每一个分割的阈值点t,求出方差:62=W0*(u0一ut)2+(u1一ut)2 (2)找出整个区间内最大的方差对应的阈值点t,即为所求阈值.2。2.2Otsu多阈值分析及改进算法传统的多阈值进行分割是,设有M个阈值把图像分成M+1类,阈值区间被分成[0,1,…,t1],[t1+1,...,t2],…,[tM+1,…,L—1].在整个阈值空间内,找到最优的阈值组合[t1,t2,…,tM]使类间的方差最大,即:(3)6=agrmax(6(t1,t2,…,tM))(3)其中:(完整word版)计算机视觉综述6(t1,t2,…tM)= \」*(uk-ut)2 (4)其中,wk,uk,ut分别表示在每一个类中出现的概率、均值和图像的总的均值。由于计算的复杂度过高,文献[4]对式(4)进行了改进,由于图像的总的均值ut不变,所以利用公式:6(t1,t2,…,tM)।」*uk2 (5)来进行类间方差的计算。而文献[4]的方法在进行求阈值时,运算的复杂度仍然是按指数级上升的.当阈值个数大于3个时,算法的运行时间较长,不利于实时性的处理。文献[5]提出了一种分割速度较快的多阈值方法,它直接利用Otsu法找到首个阈值之后,再进行解阈值时,在两个子区间内寻找各自的阈值,每次找到两个阈值.该方法相对于传统的Otsu,是一种局部最优的分割方法。而传统的Otsu是一种全局最优的分割。但是文献[5]并没有考虑到,当一个阈值把区间分成两类时,可能一类里面是背景,而另一类里含有多个目标,却把背景又进行了分割,这是一种不合理的做法。由此,文献[3]对其进行改进,并结合直方图的极值点的信息,提出了一种新的多阈值分割算法。该算法的大致思想如下:首先利用类间方差最大的思想在整个阈值范围内找到最优的阈值点;然后该阈值把区间分成两类,即两个区间。分别计算两个区间的类间最大方差,在方差最大的那个区间内部进行下一次的分割,同时把剩下较小的方差保存起来,以等待下一次的阈值计算时,参加方差的比较,利用这种方法计算下去,直至达到用户设定的阈值个数。最后,在得到的这些阈值之后,利用直方图的特性,进行最终阈值的选择根据平滑后的直方图,找到所有的波谷点.把得到的所有阈值与波谷点进行比较,找到最靠近阈值的波谷点作为最终的阈值。该多阈值分割法相对于传统的多阈值分割方法,不仅消除了部分的分割噪声,而且分割的效果和适应性都好于已有算法。算法流程图如下:

(完整word版)计算机视觉综述图7算法流程图该算法每次寻找出1一个阈值,而文献[5]每次寻找出2个阈值,该算法考虑到,将每次计算得到的方差与之前分割得到的类的方差进行比较,选择最大的方差的类别里的阈值,这样做的原因是,方差大的类别里更加有可能存在目标,而方差小的类别里很有可能是背景,如果不对方差进行比较,那么,就很有可能将背景也进行分割了,即对同一个目标或者背景进行了多次分割,这样就很容易造成错分割和过分割的问题,这是不合理的.文献[3]的实验中,作者分别用文献[4],文献[5]以及本论文提出的方法做了实验,其中一组实验的效果如图:(a)原灰度图像(b)文[4]算法(完整word版)计算机视觉综述(c)文[5](c)文[5]算法(d)文[3]算法图8House三阈值分割成四类效果图由实验结果可以看出文献[3]的算法相对于以往的算法有着非常明显的优势。图8(d)相对于图8(b)消除了一些噪声点,而且分割出的效果更好。图8(d)与图8(c)相比,图8(c)的分割存在明显的不合理处,首次利用otsu方法获得一个全局阈值之后,把背景和房子区分开之后,文献[5]算法却在下一次的阈值分割是才巴背景区域又进行了分割如图8(c),存在错分割和过分割的现象。同时,实验中,还对各个算法的运行时间做出了一个表格图像算法闻值税阈值运行时间[J经典口唇U478124169305.310文献口7S1241694.659文献H75117166tj一36总本文算法741161590,529^典{丽573112144180”637,0文献G731121:L180295.153文献日75\1~166IM00,-111本文真法711161591850.503较典口M4SOIII157286.3W文献HSO1111574.086文献.951462030.093本文算法64941460.149表格中,可以很清楚的看出,文献[3]的算法的分割时间和其他算法相比,存在明显的优势,比经典的otsu和一些改进的算法相比也存在明显的优势,而且分割的效果也明显好于已有的算法.可以把文献[3]的方法应用在边缘检测,模板匹配等方面.把分割后的图像,与边缘检测算子进行运算,能够得到较好的边缘信息,从而利用相应的模板匹配算法,进行对目标的识别.或是对分割后的目标进行特征提取,利用机器学习的相应算法进行样本的训练和学习,能够进一步提高识别的准确率,可以应用在人脸识别、交通标志的识别等方面.

(完整word版)计算机视觉综述熵阈值分割方法20世纪80年代,人们开始考虑用信息论中熵的概念进行阈值选取。1985年Kapur等人提出了一维最大熵阈值法。熵是平均信息量的表征,根据信息论,熵定义为:H=-f (v)品:其中p(x)是随机变量x的概率密度函数。对于数字图像,x可以是灰度、区域灰度、梯度等特征。根据最大熵原理,用灰度的一维熵求取阈值就是选取一个阈值t,使图像用这个阈值分割出的两部分的一阶灰度统计的信息量最大,即一维熵最大。一维最大熵法与Otsu法相比,由于涉及对数运算,速度非常慢,实时性较差。而且由于一维最大熵阈值法基于图像的原始直方图,仅仅利用了点灰度信息,而未充分利用图像的空间信息,所以当图像信噪比降低时,分割效果并不理想。作为信息度量的熵函数无疑是用于图像分割的一个恰当的目标函数。研究人员已提出许多熵阈值分割法,例如基于Shannon熵的阈值分割方法,基于Renyi熵的阈值分割方法、基于Tsallis熵的阈值分割方法等等[1。这些原始的熵阈值分割法由于只处理灰度直方图,所以通常也被称为一维熵阈值分割法,尽管一维熵阈值分割法非常简单有效,但它对于单峰或者接近于单峰情况下的图像难以进行较好的分割.特别是存在噪声等干扰因素时,一维熵阈值分割法的效果往往很不理想.3基于高维直方图的阈值分割技术这里主要介绍二维情况下各种阈值分割方法。3。3。1二维otsu阈分割方法一维Otsu阈值法采用类间方差作为目标函数,通过最大化该函数得到最佳阈值。但是Otsu方法对噪声和目标大小十分敏感,它仅对类间方差为单峰的图像产生较好的分割效果,当目标与背景的大小比例悬殊时,类间方差准则函数可能呈现双峰或多峰,致使用该法选取的全局最大值并不一定是

(完整word版)计算机视觉综述正确阈值,此方法失效.Reddi的快速算法也并未解决Otsu法准则函数极大值不唯一的缺陷.为弥补一维Otsu阈值法的不足,刘健庄等人[6提出了二维Otsu阈值法。设图象的灰度分为L级,那么象素的邻域平均灰度也分为L级。在每个象素点处计算其平均灰度,由此形成一个二元组:象素点的灰度值i和它的邻域平均灰度值j。设二元组(i,j)出现的频数为£ij,可以定义相应的联合密度Pij为:Pij=fij/Ni,j=1,2,…,L (6)式中,N为图象的象素点数,N二二二J并且二:'p=1因Pij为象素的灰度值i和其邻域均值j的共生概率密度,在绝大多数情况下,Pij的分布主要集中在(1,1)~(L,L)对角线周围,且在灰度直方图无明显的峰和谷的条件下,也显现出明显的两个峰。从而可以合理地假设远离(1,1)~(L,L)对角线的分量Pij是非常接近于0的,这符合绝大多数情况。假设在二维直方图中存在两类C0和C1,它们分别代表物体与背景,且具有两个不同的概率密度函数分布。设阀值为(S,T),那么两类的概率分别为TOC\o"1-5"\h\zW0=Pr(C0—: W0(s,t) (7)W1=Pr(C1)J J।=W1(s,t) (8)(9)(10)(11)两类对应的均值矢量为:工-:1 = 「'' ' (9)(10)(11)1A /.zm=f四川"J=(E 九“,£|=4+|H-I |=J+|H-I二维直方图上总的均值矢量为:JJTi) — ,—金♦—正->」)j-II a-I>-I在绝大多数情况下,远离直方图(1,1)〜(L,L)对角线的Pij可以忽略不计,所以可以合理地假设在两个区域:i=s+1,…,1;j=1,...,t和i=1,…,s;j=t+1,…,L有Pij=0,此时很容易证明下列关系式成立:W0+W1=1'■ (12)

(完整word版)计算机视觉综述定义一个类间的离散度矩阵:%桂=QJ[(%桂=QJ[("占—IIlk—11T)?]刘健庄等使用SB的迹作为类间离散测度,有'二审*I-JJjt)2+f-叼月十用口收上一unJ-+(nij-zjjjJ-利用公式(12)化简得:/[*如-"『一 "二丁[fJ一传frj工"E= 晶O一二M&类似于一维otsu,最佳阀值(s’,t’)满足下式ijrSFi(s'+"/)= f(3 /J(13)(14)(15)尽管二维Otsu阈值分割方法加入了邻域平均灰度的处理,但它在许多应用场景下(如对低质图像、含有椒盐噪声或混合噪声的图像)仍然难以达到理想的分割效果.从决策分析的角度看,二维直方图所利用的特征量数目较少,而且特征量之间存在着较高的相关性。同时对位于阈值附近且象素灰度值与其邻域平均灰度值相差较大的区域简单地认为出现的概率为零,从而使得算法不够准确.且二维阈值分割的运算复杂性比较大,文献[7]在二维Otsu自适应阈值分割算法的基础上提出了一种改进的自适应阈值分割算法,。这种改进算法由于充分考虑了图像二维直方图中象素灰度值及其邻域平均灰度值比较接近的区域而获得了比传统算法具有更强抗噪声能力的分割算法,文献[7]中提出的方法的核心就是对传统的二维直方图中所选择计算目标和背景均值的区域进行改进,而不是假设远离直方图对角线的目标和背景出现的概率忽略不计.同时通过将该算法用于显微细胞图像的分割证明了它不仅分割效果得到改善,同时还大大降低了算法的复杂性。3.2二维熵阈值分割方法在图像的特征中,点灰度是最基本的特征,它对噪声较为敏感,而区域灰度特征包含了图像的部分空间信息,对噪声的敏感程度低于点灰度特征。1989年Abutaleb将一维最大熵方法推广到二维,利用图像中各个像素的点灰度值及其区域灰度均值生成二维直方图,并以此为依据选取最佳阈值其原理如下:设L为原始灰度图像的灰度级数,则原始图像中的每一个像素都对应于一个点灰度-区域灰度均值对,设fij为图像

(完整word版)计算机视觉综述中点灰度为i及其区域灰度均值为j的像素点数pij为点灰度-区域灰度均值对(i,j)发生的概率,即:pij=fij/N*N,其中N*N为图像大小,那么{pij,i,j=1,2,〃L}就是该图像的关于点灰度一区域灰度均值的二维直方图.图1为二维直方图的XOY平面图。沿对角线分布的A区和B区分别代表目标图9二维直方图XOY平面图景,远离对角线的C区和D区代表边界和噪声,所以应该在A区和B区上用点灰度一区域灰度均值二维最大嫡法确定最佳阈值,使真正代表目标和背景的信息量最大.定义离散二维嫡为:(16)h——23Vg印。

1j(16)则熵的判别函数定义为:(17)0"一y=IrW〃T.I— )/+ //V/+(17)<//JL— //t I— /J.LJ选取的最佳阈值向量(s*,t*)满足:(18)由K、f)=MUK,Ws,i)}(18)其中,A ij-ij“d=— ^3)疗心吕户心/J

p rh r 由i—L--5«J=I1'■£///=—52目户).

£/i=I%…%L;j=I?L二维最大熵阈值法在相对形状测度、相对均匀测度和错分概率等评估准则下均呈现出良好的性能对不同目标大小和信噪比的图像均产生很好的分割效果,是一种高精度的阈值选取方法。但是,为了获得熵函数的(完整wo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论