版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年吉林中考数学真题及答案数学试卷共7页,包括六道大题,共26道小题.全卷满分120分.考试时间为120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必将姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷上答题无效.一、单项选择题(每小题2分,共12分)1.月球表面的白天平均温度零上,记作,夜间平均温度零下,应记作(
)A. B. C. D.2.图①是2023年6月11日吉林市全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台的主视图是(
)
A.
B.
C.
D.
3.下列算式中,结果等于的是(
)A. B. C. D.4.一元二次方程根的判别式的值是(
)A.33 B.23 C.17 D.5.如图,在中,点D在边上,过点D作,交于点E.若,则的值是(
)
A. B. C. D.6.如图,,是的弦,,是的半径,点为上任意一点(点不与点重合),连接.若,则的度数可能是(
)
A. B. C. D.二、填空题(每小题3分,共24分)7.计算:=_________.8.不等式的解集为__________.9.计算:_________.10.如图,钢架桥的设计中采用了三角形的结构,其数学道理是__________.11.如图,在中,,分别以点B和点C为圆心,大于的长为半径作弧,两孤交于点D,作直线交于点E.若,则的大小为__________度.
12.《九章算术》中记载了一道数学问题,其译文为:有人合伙买羊,每人出5钱,还缺45钱;每人出7钱,还缺3钱.问合伙人数是多少?为解决此问题,设合伙人数为x人,可列方程为__________.13.如图①,A,B表示某游乐场摩天轮上的两个轿厢.图②是其示意图,点O是圆心,半径r为,点A,B是圆上的两点,圆心角,则的长为_________.(结果保留)
14.如图,在中,.点,分别在边,上,连接,将沿折叠,点的对应点为点.若点刚好落在边上,,则的长为__________.
三、解答题(每小题5分,共20分)15.下面是一道例题及其解答过程的一部分,其中M是单项式.请写出单项式M,并将该例题的解答过程补充完整.例
先化简,再求值:,其中.解:原式……16.2023年6月4日,“神舟”十五号载人飞船返回舱成功着陆.某校为弘扬爱国主义精神,举办以航天员事迹为主题的演讲比赛,主题人物由抽卡片决定,现有三张不透明的卡片,卡片正面分别写着费俊龙、邓清明、张陆三位航天员的姓名,依次记作A,B,C,卡片除正面姓名不同外,其余均相同.三张卡片正面向下洗匀后,甲选手从中随机抽取一张卡片,记录航天员姓名后正面向下放回,洗匀后乙选手再从中随机抽取一张卡片.请用画树状图或列表的方法,求甲、乙两位选手演讲的主题人物是同一位航天员的概率.17.如图,点C在线段上,在和中,.求证:.18.2022年12月28日查干湖冬捕活动后,某商家销售A,B两种查干湖野生鱼,如果购买1箱A种鱼和2箱B种鱼需花费1300元:如果购买2箱A种鱼和3箱B种鱼需花费2300元.分别求每箱A种鱼和每箱B种鱼的价格.四、解答题(每小题7分,共28分)19.图①、图②、图③均是的正方形网格,每个小正方形的顶点称为格点,线段的端点均在格点上.在图①、图②、图③中以为边各画一个等腰三角形,使其依次为锐角三角形、直角三角形、钝角三角形,且所画三角形的顶点均在格点上.
20.笑笑同学通过学习数学和物理知识,知道了电磁波的波长(单位:m)会随着电磁波的频率f(单位:)的变化而变化.已知波长与频率f是反比例函数关系,下面是它们的部分对应值:频率f()101550波长(m)30206(1)求波长关于频率f的函数解析式.(2)当时,求此电磁波的波长.21.某校数学活动小组要测量校园内一棵古树的高度,王朵同学带领小组成员进行此项实践活动,记录如下:填写人:王朵
综合实践活动报告
时间:2023年4月20日活动任务:测量古树高度活动过程【步骤一】设计测量方案小组成员讨论后,画出如图①的测量草图,确定需测的几何量.
【步骤二】准备测量工具自制测角仪,把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪,利用它可以测量仰角或俯角,如图②所示准备皮尺.
【步骤三】实地测量并记录数据如图③,王朵同学站在离古树一定距离的地方,将这个仪器用手托起,拿到眼前,使视线沿着仪器的直径刚好到达古树的最高点.如图④,利用测角仪,测量后计算得出仰角.测出眼睛到地面的距离.测出所站地方到古树底部的距离.
________...【步骤四】计算古树高度.(结果精确到)(参考数据:)请结合图①、图④和相关数据写出的度数并完成【步骤四】.22.为了解年吉林省粮食总产量及其增长速度的情况,王翔同学查阅相关资料,整理数据并绘制了如下统计图:
2年吉林省粮食总产量及其增长速度(以上数据源于《年吉林省国民经济和社会发展统计公报》)注:.根据此统计图,回答下列问题:(1)年全省粮食总产量比年全省粮食总产量多__________万吨.(2)年全省粮食总产量的中位数是__________万吨.(3)王翔同学根据增长速度计算方法得出年吉林省粮食总产量约为万吨.结合所得数据及图中信息对下列说法进行判断,正确的画“√”,错误的画“×”①年全省粮食总产量增长速度最快的年份为年,因此这年中,年全省粮食总产量最高.(
)②如果将年全省粮食总产量的中位数记为万吨,年全省粮食总产量的中位数记为万吨,那么.(
)五、解答题(每小题8分,共16分)23.甲、乙两个工程组同时挖掘沈白高铁某段隧道,两组每天挖掘长度均保持不变,合作一段时间后,乙组因维修设备而停工,甲组单独完成了剩下的任务,甲、乙两组挖掘的长度之和与甲组挖掘时间x(天)之间的关系如图所示.
(1)甲组比乙组多挖掘了__________天.(2)求乙组停工后y关于x的函数解析式,并写出自变量x的取值范围.(3)当甲组挖掘的总长度与乙组挖掘的总长度相等时,直接写出乙组己停工的天数.24.【操作发现】如图①,剪两张对边平行的纸条,随意交叉叠放在一起,使重合的部分构成一个四边形.转动其中一张纸条,发现四边形总是平行四边形其中判定的依据是__________.【探究提升】取两张短边长度相等的平行四边形纸条和(,),其中,,将它们按图②放置,落在边上,与边分别交于点M,N.求证:是菱形.【结论应用】保持图②中的平行四边形纸条不动,将平行四边形纸条沿或平移,且始终在边上.当时,延长交于点P,得到图③.若四边形的周长为40,(为锐角),则四边形的面积为_________.
六、解答题(每小题10分,共20分)25.如图,在正方形中,,点是对角线的中点,动点,分别从点,同时出发,点以的速度沿边向终点匀速运动,点以的速度沿折线向终点匀速运动.连接并延长交边于点,连接并延长交折线于点,连接,,,,得到四边形.设点的运动时间为()(),四边形的面积为()
(1)的长为__________,的长为_________.(用含x的代数式表示)(2)求关于的函数解析式,并写出自变量的取值范围.(3)当四边形是轴对称图形时,直接写出的值.26.如图,在平面直角坐标系中,抛物线经过点.点,在此抛物线上,其横坐标分别为,连接,.
(1)求此抛物线的解析式.(2)当点与此抛物线的顶点重合时,求的值.(3)当的边与轴平行时,求点与点的纵坐标的差.(4)设此抛物线在点与点之间部分(包括点和点)的最高点与最低点的纵坐标的差为,在点与点之间部分(包括点和点)的最高点与最低点的纵坐标的差为.当时,直接写出的值.参考答案1.B【分析】根据正负数表示相反意义的量,平均温度零上表示正,平均温度零下表示负即可求解.【详解】解:平均温度零上,记作,夜间平均温度零下,应记作,故选:B.【点睛】本题主要考查正负数与实际问题的综合,掌握正负数表示相反意义的量是解题的关键.2.A【分析】主视图是从几何体正面观察到的视图.【详解】解:领奖台从正面看,是由三个矩形组成的.三个矩形,右边最低,中间最高,故选A.【点睛】本题考查主视图,掌握三视图的特征是解题关键.3.B【分析】根据同底数幂的运算法则即可求解.【详解】解:选项,不是同类项,不能进行加减乘除,不符合题意;选项,根据同底数幂的乘法可知,底数不变,指数相加,结果是,符合题意;选项,根据幂的乘方可知,底数不变,指数相乘,结果是,不符合题意;选项,根据同底数幂的除法可知,底数不变,指数相减,结果是,不符合题意;故选:.【点睛】本题主要考查同底数幂的混合运算法则,掌握同底数幂的运算法则是解题的关键.4.C【分析】直接利用一元二次方程根的判别式求出答案.【详解】解:∵,,,∴.故选:C.【点睛】此题主要考查了一元二次方程的根的判别式,正确记忆公式是解题关键.5.A【分析】利用平行线分线段成比例定理的推论得出,即可求解.【详解】解:∵中,,∴,∵∴,故选:A.【点睛】本题考查平行线分线段成比例定理的推论,解题关键是牢记“平行于三角形一边的直线截其它两边(或两边的延长线)所得对应线段成比例”.6.D【分析】根据圆周角定理得出,进而根据三角形的外角的性质即可求解.【详解】解:∵,,∴,∵,∴的度数可能是故选:D.【点睛】本题考查了圆周角定理,三角形的外角的性质,熟练掌握圆周角定理是解题的关键.7..【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:|﹣|=,故答案为.8.【分析】根据移项、化系数为1,的步骤解一元一次不等式即可求解.【详解】解:解得:,故答案为:.【点睛】本题考查了求一元一次不等式的解集,熟练掌握不等式的性质是解题的关键.9.【分析】根据单项式乘多项式的运算法则求解.【详解】解:.故答案为:.【点睛】本题主要考查了单项式乘多项式的运算法则,掌握单项式乘多项式的运算法则是解答关键.10.三角形具有稳定性【分析】根据三角形结构具有稳定性作答即可.【详解】解:其数学道理是三角形结构具有稳定性.故答案为:三角形具有稳定性.【点睛】本题考查了三角形具有稳定性,解题的关键是熟练的掌握三角形形状对结构的影响.11.55【分析】首先根据题意得到是的角平分线,进而得到.【详解】∵由作图可得,是的角平分线∴.故答案为:55.【点睛】此题考查了作角平分线,角平分线的定义,解题的关键是熟练掌握以上知识点.12.【分析】根据题中钱的总数列一元一次方程即可.【详解】解:设合伙人数为x人,根据题意列方程;故答案为:.【点睛】本题主要考查了一元一次方程的应用,准确分析列方程是解题的关键.13.【分析】利用弧长公式直接计算即可.【详解】∵半径,圆心角,∴,故答案为:.【点睛】本题考查了弧长计算,熟练掌握弧长公式,并规范计算是解题的关键.14.【分析】根据折叠的性质以及含30度角的直角三角形的性质得出,即可求解.【详解】解:∵将沿折叠,点的对应点为点.点刚好落在边上,在中,,,∴,∴,故答案为:.【点睛】本题考查了折叠的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.15.,,,过程见解析【分析】先根据通分的步骤得到M,再对原式进行化简,最后代入计算即可.【详解】解:由题意,第一步进行的是通分,∴,∴,原式,当时,原式.【点睛】本题考查了分式的化简求值,正确对分式进行化简是解题的关键.16.【分析】分别使用树状图法或列表法将甲乙两位选手抽取卡片的结果表示出来,第一次共有3种不同的抽取情况,第二次同样也各有3种不同的抽取情况,所有等可能出现的结果有9种,找出两次卡片相同的抽取结果,即可算出概率.【详解】解:解法一:画树状图,根据题意,画树状图结果如下:
由树状图可以看出,所有等可能出现的结果一共有9种,而两张卡片中相同的结果有3种,所以甲、乙两位选手演讲的主题人物是同一位航天员的概率.解法二:用列表法,根据题意,列表结果如下:ABCAAABACABABBBCBCACBCCC由表格可以看出,所有等可能出现的结果一共有9种,而两张卡片中相同的结果有3种,所以甲、乙两位选手演讲的主题人物是同一位航天员的概率.【点睛】本题考查了列表法或树状图法求概率,用图表的形式将第一次、第二次抽取所可能发生的情况一一列出,避免遗漏.17.证明见解析【分析】直接利用证明,再根据全等三角形的性质即可证明.【详解】解:在和中,∴∴.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.18.每箱A种鱼的价格是700元,每箱B种鱼的价格是300元.【分析】设每箱A种鱼的价格是元,每箱B种鱼的价格是元,根据题意建立方程组,解方程组即可得.【详解】解:设每箱A种鱼的价格是元,每箱B种鱼的价格是元,由题意得:,解得,答:每箱A种鱼的价格是700元,每箱B种鱼的价格是300元.【点睛】本题考查了二元一次方程组的应用用,正确建立方程组是解题关键.19.见解析【分析】根据勾股定理可得,结合题意与网格的特点分别作图即可求解.【详解】解:如图所示,
如图①,,则是等腰三角形,且是锐角三角形,如图②,,,则,则是等腰直角三角形,如图③,,则是等腰三角形,且是钝角三角形,【点睛】本题考查了勾股定理与网格问题,等腰三角形的定义,熟练掌握勾股定理是解题的关键.20.(1);(2)【分析】(1)设解析式为,用待定系数法求解即可;(2)把值代入(1)所求得的解析式中,即可求得此电磁波的波长.【详解】(1)解:设波长关于频率f的函数解析式为,把点代入上式中得:,解得:,;(2)解:当时,,答:当时,此电磁波的波长为.【点睛】本题是反比例函数的应用问题,考查了求反比例函数的解析式及求反比例函数的函数值等知识,利用待定系数法求得反比例函数解析式是解题的关键.21.,【分析】根据测角仪显示的度数和直角三角形两锐角互余即可求得的度数,证明四边形是矩形得到,再解直角三角形求得的度数,即可求解.【详解】解:测角仪显示的度数为,∴,∵,,,∴,∴四边形是矩形,,
在中,,∴.【点睛】本题考查了解直角三角形的实际应用和矩形的判定与性质,熟练掌握解直角三角形的运算是解题的关键.22.(1)(2)(3)①×;②√【分析】(1)根据条形统计图,可知年全省粮食总产量为;年全省粮食总产量为,作差即可求解.(2)根据中位数的定义,即可求解.(3)①根据统计图可知年全省粮食总产量不是最高;②根据中位数的定义可得,即可求解.【详解】(1)解:根据统计图可知,年全省粮食总产量为;年全省粮食总产量为,∴年全省粮食总产量比年全省粮食总产量多(万吨);故答案为:.(2)将年全省粮食总产量从小到大排列为:;∴年全省粮食总产量的中位数是万吨故答案为:.(3)①年全省粮食总产量增长速度最快的年份为年,但是在这年中,年全省粮食总产量不是最高.故答案为:×.②依题意,,∴,故答案为:√.【点睛】本题考查了条形统计图与折线统计图,中位数的计算,从统计图中获取信息是解题的关键.23.(1)30(2)(3)10天【分析】(1)由图可知,前30天甲乙两组合作,30天以后甲组单独做,据此计算即可;(2)设乙组停工后y关于x的函数解析式为,用待定系数法求解,再结合图象即可得到自变量x的取值范围;(3)先计算甲乙两组每天各挖掘多少千米,再计算乙组挖掘的总长度,设乙组己停工的天数为a,根据甲组挖掘的总长度与乙组挖掘的总长度相等列方程计算即可.【详解】(1)解:由图可知,前30天甲乙两组合作,30天以后甲组单独做,∴甲组挖掘了60天,乙组挖掘了30天,(天)∴甲组比乙组多挖掘了30天,故答案为:30;(2)解:设乙组停工后y关于x的函数解析式为,将和两个点代入,可得,解得,∴(3)解:甲组每天挖(千米)甲乙合作每天挖(千米)∴乙组每天挖(千米),乙组挖掘的总长度为(千米)设乙组己停工的天数为a,则,解得,答:乙组己停工的天数为10天.【点睛】本题考查了一次函数的应用,待定系数法求函数的解析式,理解题意观察图象得到有用信息是解题的关键.24.(操作发现),两组对边分别平行的四边形是平行四边形;(探究提升),见解析;(结论应用),8【分析】(操作发现),根据两组对边分别平行的四边形是平行四边形解答即可;(探究提升),证明四边形是平行四边形,利用邻边相等的平行四边形是菱形即可证明结论成立;(结论应用),证明四边形是菱形,求得其边长为10,作于Q,利用正弦函数的定义求解即可.【详解】解:(操作发现),∵两张对边平行的纸条,随意交叉叠放在一起,∴,,∴四边形是平行四边形(两组对边分别平行的四边形是平行四边形),故答案为:两组对边分别平行的四边形是平行四边形;(探究提升),∵,,∴四边形是平行四边形,∵,∴,又,∴四边形是平行四边形,∴,∴平行四边形是菱形;(结论应用),∵平行四边形纸条沿或平移,∴,,∴四边形、、是平行四边形,∵,∴四边形是菱形,∵四边形是菱形,∴四边形是菱形,∵四边形的周长为40,∴,作于Q,∵,∴,∴,∴四边形的面积为.故答案为:80.【点睛】本题考查了菱形的判定和性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.25.(1);(2)(3)或【分析】(1)根据正方形中心对称的性质得出,可得四边形是平行四边形,证明即可;(2)分,两种情况分别画出图形,根据正方形的面积,以及平行四边形的性质即可求解;(3)根据(2)的图形,分类讨论即可求解.【详解】(1)解:依题意,,则,∵四边形是正方形,∴,∵点是正方形对角线的中点,∴,则四边形是平行四边形,∴,,∴,又,∴,∴,在中,,∴,∴故答案为:;.(2)解:当时,点在上,
由(1)可得,同理可得,∵,,则;当时,如图所示,
则,,,∴;综上所述,;(3)依题意,①当四边形是矩形时,此时即解得:,
当四边形是菱形时,则,∴,解得:(舍去);②如图所示,当时,
,解得,当四边形是菱形时,则,即,解得:(舍去),综上所述,当四边形是轴对称图形时,或.【点睛】本题考查了正方形的性质,动点问题,全等三角形的性质与判定,矩形的性质,平行四边形的性质与判定,菱形的性质,轴对称图形,熟练掌握以上知识是解题的关键.26.(1)(2)(3)点与点的纵坐标的差为或(4)或【分析】(1)待定系数法求解析式即可求解;(2)化为顶点式,求得顶点坐标,进而根据点的横坐标为,即可求解;(3)分轴时,轴时分别根据抛物线的对称性求得的横坐标与的横坐标,进而代入抛物线解析式,求得纵坐标,即可求解;(4)分四种情况讨论,①如图所示,当都在对称轴的左侧时,当在对称轴两侧时,当点在的右侧时,当的纵坐标小于时,分别求得,根据建立方程,解方程即可求解.【详解】(1)解:∵抛物线经过点.∴∴抛物线解析式为;(2)解:∵,顶点坐标为,∵点与此抛物线的顶点重合,点的横坐标为∴,解得:;(3)①轴时,点关于对称轴对称,,∴,则,,∴,∴点与点的纵坐标的差为;②当轴时,则关于直线对称,∴,则∴,;∴点与点的纵坐标的差为;综上所述,点与点的纵坐标的差为或;(4)①如图所示,当都在对称轴的左侧时,
则∴∵,即∴;∵∴解得:或(舍去);②当在对称轴两侧或其中一点在对称轴上时,
则,即,则,∴,解得:(舍去)或(舍去);③当点在的右侧且在直线上方时,即,
,∴解得:或(舍去);④当在直线上或下方时,即,
,,,解得:(舍去)或(舍去)综上所述,或.【点睛】本题考查了二次函数的性质,待定系数法求解析式,顶点式,熟练掌握二次函数的性质是解题的关键.
2022年吉林中考数学试题及答案一、选择题(本大题共8小题,每小题3分,共24分)1.图是由5个相同的小正方体组合而成的立体图形,其主视图是()A. B. C. D.【答案】A【解析】【分析】根据三视图的概念,从正面看到的图形就是主视图,再根据小正方体的个数和排列进行作答即可.【详解】正面看,其主视图为:故选:A.【点睛】此题主要考查了简单组合体的三视图,俯视图是从上面看所得到的图形,主视图是从正面看所得到的图形,左视图时从左面看所得到的图形,熟练掌握知识点是解题的关键.2.长春轨道客车股份有限公司制造的新型奥运版复兴号智能动车组,车头采用鹰隼形的设计,能让性能大幅提升,一列该动车组一年运行下来可节省约1800000度电,将数据1800000用科学记数法表示为()A. B. C. D.【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解】解:1800000=1.8×106,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.不等式的解集是()A. B. C. D.【答案】C【解析】【分析】直接移项解一元一次不等式即可.【详解】,,,故选:C.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的步骤是解题的关键.4.实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A. B. C. D.【答案】B【解析】【分析】观察数轴得:,再逐项判断即可求解.【详解】解:观察数轴得:,故A错误,不符合题意;B正确,符合题意;∴,故C错误,不符合题意;∴,故D错误,不符合题意;故选:B【点睛】本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键.5.如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A,变幅索的底端记为点B,垂直地面,垂足为点D,,垂足为点C.设,下列关系式正确的是()A. B. C. D.【答案】D【解析】【分析】根据正弦三角函数的定义判断即可.【详解】∵BC⊥AC,∴△ABC是直角三角形,∵∠ABC=α,∴,故选:D.【点睛】本题考查了正弦三角函数的定义.在直角三角形中任意锐角∠A的对边与斜边之比叫做∠A的正弦,记作sin∠A.掌握正弦三角函数的定义是解答本题的关键.6.如图,四边形是的内接四边形.若,则的度数为()A.138° B.121° C.118° D.112°【答案】C【解析】【分析】由圆内接四边形的性质得,再由圆周定理可得.【详解】解:∵四边形ABCD内接于圆O,∴∵∴∴故选:C【点睛】本题主要考查了圆内接四边形的性质和圆周角定理,熟练掌握相关性质和定理是解答本题的关键7.如图,在中,根据尺规作图痕迹,下列说法不一定正确的是()A. B.C. D.【答案】B【解析】【分析】根据尺规作图痕迹,可得DF垂直平分AB,BE是的角平分线,根据垂直平分线的性质和角平分线的定义,直角三角形两锐角互余,等边对等角的性质进行判断即可.【详解】根据尺规作图痕迹,可得DF垂直平分AB,BE是的角平分线,,,,综上,正确的是A、C、D选项,故选:B.【点睛】本题考查了垂直平分线和角平分线的作图,垂直平分线的性质,角平分线的定义,直角三角形两锐角互余,等边对等角的性质,熟练掌握知识点是解题的关键.8.如图,在平面直角坐标系中,点P在反比例函数(,)的图象上,其纵坐标为2,过点P作//轴,交x轴于点Q,将线段绕点Q顺时针旋转60°得到线段.若点M也在该反比例函数的图象上,则k的值为()A. B. C. D.4【答案】C【解析】【分析】作MN⊥x轴交于点N,分别表示出ON、MN,利用k值的几何意义列式即可求出结果.【详解】解:作MN⊥x轴交于点N,如图所示,∵P点纵坐标为:2,∴P点坐标表示为:(,2),PQ=2,由旋转可知:QM=PQ=2,∠PQM=60°,∴∠MQN=30°,∴MN=,QN=,∴,即:,解得:k=,故选:C.【点睛】本题主要考查的是k的几何意义,表示出对应线段是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)9.分解因式:_______.【答案】【解析】【分析】原式提取公因式m即可得到结果.【详解】解:故答案为:.【点睛】本题主要考查了提公因式分解因式,正确找出公因式是解答本题的关键.10.若关于x的方程有两个相等的实数根,则实数c的值为_______.【答案】##0.25【解析】【分析】根据方程有两个相等的实数根,可得,计算即可.【详解】关于x的方程有两个相等的实数根,,解得,故答案为:.【点睛】本题考查了一元二次方程根的判别式,即一元二次方程有两个不相等的实数根时,;有两个相等的实数根时,;没有实数根时,;熟练掌握知识点是解题的关键.11.《算法统宗》是中国古代重要的数学著作,其中记载:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.其大意为:今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住,设店中共有x间房,可求得x的值为________.【答案】8【解析】【分析】设店中共有x间房,根据“今有若干人住店,若每间住7人,则余下7人无房可住;若每间住9人,则余下一间无人住”可列一元一次方程,求解即可.【详解】设店中共有x间房,由题意得,,解得,所以,店中共有8间房,故答案为:8.【点睛】本题考查了一元一次方程的应用,准确理解题意,找到等量关系是解题的关键.12.将等腰直角三角板与量角器按如图所示的方式摆放,使三角板的直角顶点与量角器的中心O重合,且两条直角边分别与量角器边缘所在的弧交于A、B两点.若厘米,则的长度为________厘米.(结果保留)【答案】##【解析】【分析】直接根据弧长公式进行计算即可.【详解】,,故答案为:.【点睛】本题考查了弧长公式,即,熟练掌握知识点是解题的关键.13.跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形和等边三角形组合而成,它们重叠部分的图形为正六边形.若厘米,则这个正六边形的周长为_________厘米.【答案】54【解析】【分析】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,再证明△FMN、△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形即可求解.【详解】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,如图,∵六边形MNGHPO是正六边形,∴∠GNM=∠NMO=120°,∴∠FNM=∠FNM=60°,∴△FMN是等边三角形,同理可证明△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形,∴MO=BM,NG=AN,OP=PD,GH=HE,∴NG+MN+MO=AN+MN+BM=AB,GH+PH+OP=HE+PH+PD=DE,∵等边△ABC≌等边△DEF,∴AB=DE,∵AB=27cm,∴DE=27cm,∴正六边形MNGHPO的周长为:NG+MN+MO+GH+PH+OP=AB+DE=54cm,故答案为:54.【点睛】本题考查了正六边的性质、全等三角形的性质以及等边三角形的判定与性质等知识,掌握正六边的性质是解答本题的关键.14.已知二次函数,当时,函数值y的最小值为1,则a的值为_______.【答案】##【解析】【分析】先把函数解析式化为顶点式可得当时,y随x的增大而增大,当时,y随x的增大而减小,然后分两种情况讨论:若;若,即可求解.【详解】解:,∴当时,y随x的增大而增大,当时,y随x的增大而减小,若,当时,y随x的增大而减小,此时当时,函数值y最小,最小值为,不合题意,若,当时,函数值y最小,最小值为1,∴,解得:或(舍去);综上所述,a的值为.故答案为:【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.三、解答题(本大题共10小题,共78分)15.先化简,再求值:,其中.【答案】,【解析】【分析】根据平方差公式与单项式乘以单项式进行计算,然后将代入求值即可求解.【详解】解:原式=当时,原式【点睛】本题考查了整式的混合运算,实数的运算,代数式求值,正确的计算是解题的关键.16.抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”.正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率.【答案】【解析】【分析】采用列表法列举即可求解.【详解】根据题意列表如下:由表可知,总的可能结果有4种,两次之和不大于3的情况有3种,故所求概率为:3÷4=,即两次分数之和不大于3的概率为.【点睛】本题考查了用列表法或者树状图法列举求解概率的知识,掌握用列表法或者树状图法列举求解概率是解答本题的关键.17.为了让学生崇尚劳动,尊重劳动,在劳动中提升综合素质,某校定期开展劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1500千克土豆与乙班挖1200千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖100千克土豆,问乙班平均每小时挖多少千克土豆?【答案】乙班每小时挖400千克的土豆【解析】【分析】设乙班每小时挖x千克的土豆,则甲班每小时挖(100+x)千克的土豆,根据题意列出分式方程即可求解.【详解】设乙班每小时挖x千克的土豆,则甲班每小时挖(100+x)千克的土豆,根据题意有:,解得:x=400,经检验,x=400是原方程的根,故乙班每小时挖400千克的土豆.【点睛】本题考查了分式方程的应用,明确题意列出分式方程是解答本题的关键.18.如图①、图②、图③均是的正方形网格,每个小正方形的边长均为1,其顶点称为格点,的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中的形状是________;(2)在图①中确定一点D,连结、,使与全等:(3)在图②中的边上确定一点E,连结,使:(4)在图③中的边上确定一点P,在边BC上确定一点Q,连结,使,且相似比为1:2.【答案】(1)直角三角形(2)见解析(答案不唯一)(3)见解析(4)翙解析【解析】【分析】(1)运用勾股定理分别计算出AB,AC,BC的长,再运用勾股定理逆定理进行判断即可得到结论;(2)作出点A关于BC的对称点D,连接BD,CD即可得出与全等:(3)过点A作AE⊥BC于点E,则可知:(4)作出以AB为斜边的等腰直角三角形,作出斜边上的高,交AB于点P,交BC于点Q,则点P,Q即为所求.【小问1详解】∵∴,∴是直角三角形,故答案为:直角三角形;【小问2详解】如图,点D即为所求作,使与全等:【小问3详解】如图所示,点E即为所作,且使:【小问4详解】如图,点P,Q即为所求,使得,且相似比为1:2.【点睛】本题主要考查了勾股定理,勾股定理逆定理,等腰直角三角形的性质,全等三角形的判定,相似三角形的判定,熟练掌握相关定理是解答本题的关键.19.如图,在Rt中,,.点D是的中点,过点D作交于点E.延长至点F,使得,连接、、.(1)求证:四边形是菱形;(2)若,则的值为_______.【答案】(1)见解析(2)【解析】【分析】(1)根据对角线互相垂直平分的四边形是菱形即可得证;(2)设,则,根据菱形的性质可得,,勾股定理求得,根据,,即可求解.【小问1详解】证明:,,∴四边形是平行四边形,∵,四边形是菱形;【小问2详解】解:,设,则,四边形是菱形;,,,在中,,,故答案为:.【点睛】本题考查了菱形的判定与性质,勾股定理,求正切,掌握以上知识是解题的关键.20.党的十八大以来,我国把科技自立自强作为国家发展的战略支撑,科技事业发生了历史性、整体性、格局性变化,成功跨入创新型国家的行列,专利项目多项指数显著攀升.如图是长春市2016年到2020年专利授权情况的统计图.根据以上信息回答下列问题:(1)长春市从2016年到2020年,专利授权量最多的是________年:(2)长春市从2016年到2020年,专利授权量年增长率的中位数是_______;(3)与2019年相比,2020年长春市专利授权量增加了_______件,专利授权量年增长率提高了_______个百分点;(注:1%为1个百分点)(4)根据统计图提供的信息,有下列说法,正确的画“√”,错误的画“×”.①因为2019年的专利授权量年增长率最低,所以2019年的专利授权量的增长量就最小.()②与2018年相比,2019年的专利授权量年增长率虽然下降,但专利授权量仍然上升.这是因为专利授权量年增长率,所以只要专利授权量年增长率大于零,当年专利授权量就一定增加.()③通过统计数据,可以看出长春市区域科技创新力呈上升趋势,为国家科技自立自强贡献吉林力量.()【答案】(1)2020(2)18.1%(3)5479,30.2(4)①×,②√,③√【解析】【分析】(1)观察统计图可得专利授权量最多的是2020年,即可求解;(2)先把专利授权量年增长率从小到大排列,即可求解;(3)分别用2020年长春市专利授权量减去2019年长春市专利授权量,2020年专利授权量年增长率减去2019年专利授权量年增长率,即可求解;(4)①根据题意可得2017年的的专利授权量的增长量低于2019年的,可得①错误;②根据专利授权量年增长率,可得②正确;③观察统计图可得从2016年到2020年,每年的专利授权量都有所增加,可得③正确,即可求解.【小问1详解】解:根据题意得:从2016年到2020年,专利授权量最多的是2020年;故答案为:2020【小问2详解】解:把专利授权量年增长率从小到大排列为:15.8%,16.0%,18.1%,25.4%,46.0%,位于正中间的是18.1%,∴专利授权量年增长率的中位数是18.1%;故答案为:18.1%【小问3详解】解:与2019年相比,2020年长春市专利授权量增加了17373-11894=5479件;专利授权量年增长率提高了46.0%-15.8%=30.2%,专利授权量年增长率提高了302个百分点;故答案为:5479,30.2【小问4详解】解:①因为2017年的专利授权量的增长量为8190-7062=1128件;2019年的专利授权量的增长量11894-10268=1626件,所以2019年的专利授权量的增长量高于2017年的专利授权量的增长量,故①错误;故答案为:×②因为专利授权量年增长率,所以只要专利授权量年增长率大于零,当年专利授权量就一定增加,故②正确;故答案为:√根据题意得:从2016年到2020年,每年的专利授权量都有所增加,所以长春市区域科技创新力呈上升趋势,故③正确;故答案为:√【点睛】本题主要考查了折线统计图和条形统计图,理解统计图中数据之间的关系是正确解答的关键.21.己知A、B两地之间有一条长440千米的高速公路.甲、乙两车分别从A、B两地同时出发,沿此公路相向而行,甲车先以100千米/时的速度匀速行驶200千米后与乙车相遇,再以另一速度继续匀速行驶4小时到达B地;乙车匀速行驶至A地,两车到达各自的目的地后停止.两车距A地的路程y(千米)与各自的行驶时间x(时)之间的函数关系如图所示.(1)_______,_______;(2)求两车相遇后,甲车距A地的路程y与x之间的函数关系式;(3)当乙车到达A地时,求甲车距A地的路程.【答案】(1)2.6(2)甲车距A地的路程y与x之间的函数关系式(3)300千米【解析】【分析】(1)先根据甲乙两车相遇时甲车行驶的路程除以速度可求出m的值,再用m的值加4即可得n的值;(2)由(1)得(2,200)和(6,440),再运用待定系数法求解即可;(3)先求出乙车的行驶速度,从而可求出行驶时间,代入函数关系式可得结论.【小问1详解】根据题意得,(时)(时)故答案为:2.6;【小问2详解】由(1)得(2,200)和(6,440),设相遇后,甲车距A地的路程y与x之间的函数关系式为则有:,解得,甲车距A地的路程y与x之间的函数关系式【小问3详解】甲乙两车相遇时,乙车行驶的路程为440-200=240千米,∴乙车的速度为:240÷2=120(千米/时)∴乙车行完全程用时为:440÷120=(时)∵∴当时,千米,即:当乙车到达A地时,甲车距A地的路程为300千米【点睛】本题主要考查了一次函数的应用,读懂图象是解答本题的关键.22.【探索发现】在一次折纸活动中,小亮同学选用了常见的A4纸,如图①,矩形为它的示意图.他查找了A4纸的相关资料,根据资料显示得出图①中.他先将A4纸沿过点A的直线折叠,使点B落在上,点B的对应点为点E,折痕为;再沿过点F的直线折叠,使点C落在上,点C的对应点为点H,折痕为;然后连结,沿所在的直线再次折叠,发现点D与点F重合,进而猜想.【问题解决】(1)小亮对上面的猜想进行了证明,下面是部分证明过程:证明:四边形是矩形,∴.由折叠可知,,.∴.∴.请你补全余下的证明过程.【结论应用】(2)的度数为________度,的值为_________;(3)在图①的条件下,点P在线段上,且,点Q在线段上,连结、,如图②,设,则的最小值为_________.(用含a的代数式表示)【答案】(1)见解析(2)22.5°,(3)【解析】【分析】(1)根据折叠的性质可得AD=AF,,由HL可证明结论;(2)根据折叠的性质可得证明是等腰直角三角形,可求出GF的长,从而可得结论;(3)根据题意可知点F与点D关于AG对称,连接PD,则PD为PQ+FQ最小值,过点P作PR⊥AD,求出PR=AR=,求出DR,根据勾腰定理可得结论.【小问1详解】证明:四边形矩形,∴.由折叠可知,,.∴.∴.由折叠得,,∴∴又AD=AF,AG=AG∴【小问2详解】由折叠得,∠又∠∴∠由得,∠∠又∠∴∠∴∠∴设则∴∴∴【小问3详解】如图,连接∵∴AG是FD的垂直平分线,即点F与点D关于AG轴对称,连接PD交AG于点Q,则PQ+FQ的最小值为PD的长;过点P作交AD于点R,∵∠∴∠∴又∴∴在中,∴∴的最小值为【点睛】本题主要考查了折叠的性质,全等三角形的判定与性质,最短路径问题,矩形的性质以及勾股定理等知识,正确作出辅助线构造直角三角形是解答本题的关键.23.如图,在中,,,点M为边的中点,动点P从点A出发,沿折线以每秒个单位长度的速度向终点B运动,连结.作点A关于直线的对称点,连结、.设点P的运动时间为t秒.(1)点D到边的距离为__________;(2)用含t的代数式表示线段的长;(3)连结,当线段最短时,求的面积;(4)当M、、C三点共线时,直接写出t的值.【答案】(1)3(2)当0≤t≤1时,;当1<t≤2时,;(3)(4)或【解析】【分析】(1)连接DM,根据等腰三角形的性质可得DM⊥AB,再由勾股定理,即可求解;(2)分两种情况讨论:当0≤t≤1时,点P在AD边上;当1<t≤2时,点P在BD边上,即可求解;(3)过点P作PE⊥DM于点E,根据题意可得点A运动轨迹为以点M为圆心,AM长为半径的圆,可得到当点D、A′、M三点共线时,线段最短,此时点P在AD上,再证明△PDE∽△ADM,可得,从而得到,在中,由勾股定理可得,即可求解;(4)分两种情况讨论:当点位于M、C之间时,此时点P在AD上;当点()位于CM的延长线上时,此时点P在BD上,即可求解.【小问1详解】解:如图,连接DM,∵AB=4,,点M为边的中点,∴AM=BM=2,DM⊥AB,∴,即点D到边的距离为3;故答案为:3【小问2详解】解:根据题意得:当0≤t≤1时,点P在AD边上,;当1<t≤2时,点P在BD边上,;综上所述,当0≤t≤1时,;当1<t≤2时,;【小问3详解】解:如图,过点P作PE⊥DM于点E,∵作点A关于直线的对称点,∴A′M=AM=2,∴点A的运动轨迹为以点M为圆心,AM长为半径的圆,∴当点D、A′、M三点共线时,线段最短,此时点P在AD上,∴,根据题意得:,,由(1)得:DM⊥AB,∵PE⊥DM,∴PE∥AB,∴△PDE∽△ADM,∴,∴,解得:,∴,在中,,∴,解得:,∴,∴;【小问4详解】解:如图,当点M、、C三点共线时,且点位于M、C之间时,此时点P在AD上,连接AA′,A′B,过点P作PF⊥AB于点F,过点A′作A′G⊥AB于点G,则AA′⊥PM,∵AB为直径,∴∠A=90°,即AA′⊥A′B,∴PM∥A′B,∴∠PMF=∠ABA′,过点C作CN⊥AB交AB延长线于点N,在中,AB∥DC,∵DM⊥AB,∴DM∥CN,∴四边形CDMN为平行四边形,∴CN=DM=3,MN=CD=4,∴CM=5,∴,∵M=2,∴,∴,∴,∴,∴,∴,即PF=3FM,∵,,∴,∴,即AF=2FM,∵AM=2,∴,∴,解得:;如图,当点()位于CM的延长线上时,此时点P在BD上,,过点作于点G′,则,取的中点H,则点M、P、H三点共线,过点H作HK⊥AB于点K,过点P作PT⊥AB于点T,同理:,∵HK⊥AB,,∴HK∥A′′G′,∴,∵点H是的中点,∴,∴,∴,∴,∴,即MT=3PT,∵,,∴,∴,∵MT+BT=BM=2,∴,∴,解得:;综上所述,t的值为或.【点睛】本题主要考查了四边形的综合题,熟练掌握平行四边形的性质,圆的基本性质,相似三角形的判定和性质,解直角三角形,根据题意得到点的运动轨迹是解题的关键,是中考的压轴题.24.在平面直角坐标系中,抛物线(b是常数)经过点.点A在抛物线上,且点A的横坐标为m().以点A为中心,构造正方形,,且轴.(1)求该抛物线对应的函数表达式:(2)若点B是抛物线上一点,且在抛物线对称轴左侧.过点B作x轴的平行线交抛物线于另一点C,连接.当时,求点B的坐标;(3)若,当抛物线在正方形内部的点的纵坐标y随x的增大而增大时,或者y随x的增大而减小时,求m的取值范围;(4)当抛物线与正方形的边只有2个交点,且交点的纵坐标之差为时,直接写出m的值.【答案】(1)(2)(3)或(4)或或.【解析】【分析】(1)将点代入,待定系数法求解析式即可求解;(2)设,根据对称性可得,根据,即可求解;(3)根据题意分两种情况讨论,分别求得当正方形点在轴上时,此时与点重合,当经过抛物线的对称轴时,进而观察图象即可求解;(4)根据题意分三种情况讨论,根据正方形的性质以及点的坐标位置,即可求解.【小问1详解】解:∵抛物线(b是常数)经过点∴解得【小问2详解】如图,由则对称轴为直线,设,则解得【小问3详解】点A在抛物线上,且点A的横坐标为m().以点A为中心,构造正方形,,且轴,且在轴上,如图,①当抛物线在正方形内部的点的纵坐标y随x的增大而增大时,如图,当正方形点在轴上时,此时与点重合,的解析式为,将代入即解得观察图形可知,当时,抛物线在正方形内部的点的纵坐标y随x的增大而增大;②当抛物线在正方形内部的点的纵坐标y随x的增大而减小时,当经过抛物线的对称轴时,解得,观察图形可知,当时,抛物线在正方形内部的点的纵坐标y随x的增大而增大;综上所述,m的取值范围为或【小问4详解】①如图,设正方形与抛物线的交点分别为,当时,则是正方形的中心,即②如图,当点在抛物线左侧,轴右侧时,交点的纵坐标之差为,的纵坐标为的横坐标为在抛物线上,解得③当在抛物线对称轴的右侧时,正方形与抛物线的交点分别为,,设直线交轴于点,如图,则即设直线解析式为则解得直线解析式为联立解得(舍去)即的横坐标为,即,综上所述,或或.【点睛】本题考查了二次函数的综合问题,二次函数的对称性,正方形的性质,掌握二次函数图象的性质是解题的关键.
2021年吉林中考数学真题及答案一、选择题(本大题共8小题,每小题3分,共24分)1.﹣(﹣2)的值为()A. B.﹣ C.2 D.﹣2【分析】直接根据相反数的定义可得答案.【解答】解:﹣(﹣2)的值为2.故选:C.2.据报道,我省今年前4个月货物贸易进出口总值为52860000000元人民币,比去年同期增长28.2%.其中52860000000这个数用科学记数法表示为()A.0.5286×1011 B.5.286×1010 C.52.86×109 D.5286×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:52860000000=5.286×1010.故选:B.3.如图是一个几何体的三视图,这个几何体是()A.圆锥 B.长方体 C.球 D.圆柱【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和俯视图为长方形可得此几何体为柱体,由左视图为圆形可得为圆柱.故选:D.4.关于x的一元二次方程x2﹣6x+m=0有两个不相等的实数根,则m的值可能是()A.8 B.9 C.10 D.11【分析】根据判别式的意义得到△=(﹣6)2﹣4m>0,然后解关于m的不等式,最后对各选项进行判断.【解答】解:根据题意得△=(﹣6)2﹣4m>0,解得m<9.故选:A.5.如图是净月潭国家森林公园一段索道的示意图.已知A、B两点间的距离为30米,∠A=α,则缆车从A点到达B点,上升的高度(BC的长)为()A.30sinα米 B.米 C.30cosα米 D.米【分析】根据sinα=求解.【解答】解:∵sinα==,∴BC=30sinα米.故选:A.6.如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35°,则∠ACB的大小为()A.35° B.45° C.55° D.65°【分析】先根据切线的性质得到∠ABC=90°,然后利用互余计算出∠ACB的度数.【解答】解:∵BC是⊙O的切线,AB是⊙O的直径,∴AB⊥BC,∴∠ABC=90°,∴∠ACB=90°﹣∠BAC=90°﹣35°=55°.故选:C.7.在△ABC中,∠BAC=90°,AB≠AC.用无刻度的直尺和圆规在BC边上找一点D,使△ACD为等腰三角形.下列作法不正确的是()A. B. C. D.【分析】根据等腰三角形的定义一一判断即可.【解答】解:A、由作图可知AD是△ABC的角平分线,推不出△ADC是等腰三角形,本选项符合题意.B、由作图可知CA=CD,△ADC是等腰三角形,本选项不符合题意.C、由作图可知DA=CD,△ADC是等腰三角形,本选项不符合题意.D、由作图可知BD=CD,推出AD=DC=BD,△ADC是等腰三角形,本选项不符合题意.故选:A.8.如图,在平面直角坐标系中,点A、B在函数y=(k>0,x>0)的图象上,过点A作x轴的垂线,与函数y=﹣(x>0)的图象交于点C,连结BC交x轴于点D.若点A的横坐标为1,BC=3BD,则点B的横坐标为()A. B.2 C. D.3【分析】作BE⊥x轴于E,则AC∥BE,即可得到△CDF∽△BDE,由题意得出==,即可CF=2BE,DF=2DE,设B(,b),则C(1,﹣2b),代入y=﹣(x>0)即可求得k=2b,从而求得B的坐标为2.【解答】解:作BE⊥x轴于E,∴AC∥BE,∴△CDF∽△BDE,∴==,∵BC=3BD,∴==,∴CF=2BE,DF=2DE,设B(,b),∴C(1,﹣2b),∵函数y=﹣(x>0)的图象交于点C,∴﹣k=1×(﹣2b)=﹣2b,∴k=2b,∴B的横坐标为==2,故选:B.二、填空题(本大题共6小题,每小题3分,共18分)9.分解因式:a2+2a=a(a+2).【分析】直接提公因式法:观察原式a2+2a,找到公因式a,提出即可得出答案.【解答】解:a2+2a=a(a+2).10.不等式组的所有整数解为0、1.【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,从而得出答案.【解答】解:解不等式2x>﹣1,得:x>﹣0.5,则不等式组的解集为﹣0.5<x≤1,∴不等式组的整数解为0、1,故答案为:0、1.11.将一副三角板按如图所示的方式摆放,点D在边AC上,BC∥EF,则∠ADE的大小为75度.【分析】由“两直线平行,同位角性质”得到∠1=∠E=45°,再根据三角形的外角定理求解即可.【解答】解:如图,∠C=30°,∠E=45°,∵BC∥EF,∴∠1=∠E=45°,∴∠ADE=∠1+∠C=45°+30°=75°,故答案为:75.12.如图是圆弧形状的铁轨示意图,半径OA的长度为200米,圆心角∠AOB=90°,则这段铁轨的长度为100π米.(铁轨的宽度忽略不计,结果保留π)【分析】根据圆的弧长计算公式l=,代入计算即可.【解答】解:圆弧长是:=100π(米).故答案是:100π.13.如图,在平面直角坐标系中,等腰直角三角形AOB的斜边OA在y轴上,OA=2,点B在第一象限.标记点B的位置后,将△AOB沿x轴正方向平移至△A1O1B1的位置,使A1O1经过点B,再标记点B1的位置,继续平移至△A2O2B2的位置,使A2O2经过点B1,此时点B2的坐标为(3,1).【分析】过点B作BP⊥y轴于点P,由△ABO是等腰直角三角形,OA=2知AP=OP=1,∠AOB=45°,继而得△BPO是等腰直角三角形,据此可知BP=PO=1,再根据题意可得答案.【解答】解:如图所示,过点B作BP⊥y轴于点P,∵△ABO是等腰直角三角形,OA=2,∴AP=OP=1,∠AOB=45°,∴△BPO是等腰直角三角形,∴BP=PO=1,由题意知点B2的坐标为(3,1),故答案为:(3,1).14.如图,在平面直角坐标系中,点A(2,4)在抛物线y=ax2上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F两点.当四边形CDFE为正方形时,线段CD的长为﹣2+2.【分析】通过待定系数法求出函数解析式,然后设点C横坐标为m,则CD=CE=2m,从而得出点E坐标为(m,4﹣2m),将点坐标代入解析式求解.【解答】解:把A(2,4)代入y=ax2中得4=4a,解得a=1,∴y=x2,设点C横坐标为m,则CD=CE=2m,∴点E坐标为(m,4﹣2m),∴m2=4﹣2m,解得m=﹣1﹣(舍)或m=﹣1+.∴CD=2m=﹣2+2.故答案为:﹣2+2.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(a+2)(a﹣2)+a(1﹣a),其中a=+4.【分析】根据平方差公式、单项式乘多项式的运算法则把原式化简,把a的值代入计算即可.【解答】解:原式=a2﹣4+a﹣a2=a﹣4,当a=+4时,原式=+4﹣4=.16.(6分)在一个不透明的口袋中装有三个小球,分别标记数字1、2、3,每个小球除数字不同外其余均相同.小明和小亮玩摸球游戏,两人各摸一个球,谁摸到的数字大谁获胜,摸到相同数字记为平局.小明从口袋中摸出一个小球记下数字后放回并搅匀,小亮再从口袋中摸出一个小球.用画树状图(或列表)的方法,求小明获胜的概率.【分析】画树状图,共有9种等可能的结果,小明获胜的结果有3种,再由概率公式求解即可.【解答】解:画树状图如图:共有9种等可能的结果,小明获胜的结果有3种,∴小明获胜的概率为=.17.(6分)为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同.求每千克有机大米的售价为多少元?【分析】设每千克有机大米的售价为x元,则每千克普通大米的售价为(x﹣2)元,根据数量=总价÷单价,结合用420元购买的有机大米与用300元购买的普通大米的重量相同,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设每千克有机大米的售价为x元,则每千克普通大米的售价为(x﹣2)元,依题意得:=,解得:x=7,经检验,x=7是原方程的解,且符合题意.答:每千克有机大米的售价为7元.18.(7分)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=4,BD=8,点E在边AD上,AE=AD,连结BE交AC于点M.(1)求AM的长.(2)tan∠MBO的值为.【分析】(1)由菱形的性质可得△AEM∽△CBM,再由=求解.(2)由tan∠MBO=求解.【解答】解:(1)在菱形ABCD中,AD∥BC,AD=BC,∴△AEM∽△CBM,∴=,∵AE=AD,∴AE=BC,∴==,∴AM=CM=AC=1.(2)∵AO=AC=2,BO=BD=4,AC⊥BD,∴∠BOM=90°,AM=OM=AO=1,∴tan∠MBO==.故答案为:.19.(7分)稳定的粮食产量是人民幸福生活的基本保障,为了解粮食产量情况,小明查阅相关资料得到如下信息:长春市2020年的粮食总产量达到960万吨,比上年增长约9%.其中玉米产量增长约12%,水稻产量下降约2%,其他农作物产量下降约10%.根据以上信息回答下列问题:(1)2020年玉米产量比2019年玉米产量多85万吨.(2)扇形统计图中n的值为15.(3)计算2020年水稻的产量.(4)小明发现如果这样计算2020年粮食总产量的年增长率:=0,就与2020年粮食总产量比上年增长约9%不符,请说明原因.【分析】(1)2020年玉米产量减去2019年玉米产量即可;(2)1减去另外两个百分数即可求解;(3)根据水稻产量下降约2%求解即可;(4)因为式子中的几个百分数基数不同,所以不能这样计算.【解答】解:(1)792﹣707=85(万吨),故答案为:85;(2)1﹣82.5%﹣2.5%=15%,∴n=15,故答案为:15;(3)147×(1﹣2%)=144.06(万吨),答:2020年水稻的产量为144.06万吨;(4)正确的计算方法为:(792+144.06+24﹣707﹣147﹣27)÷(707+147+27)×100%≈9%,因为题中式子中的几个百分数基数不同,所以不能这样计算.20.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A、B、C均为格点.只用无刻度的直尺,分别在给定的网格中找一格点M,按下列要求作图:(1)在图①中,连结MA、MB,使MA=MB;(2)在图②中,连结MA、MB、MC,使MA=MB=MC;(3)在图③中,连结MA、MC,使∠AMC=2∠ABC.【分析】(1)根据勾股定理得MA=MB=.(2)连接AC,取AC中点M,MA=MB=MC=.(3)取△ABC内心M,由圆周角定理得∠AMC=2∠ABC.【解答】解:如图,21.(8分)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水壶流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间.某学校STEAM小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:【实验观察】实验小组通过观察,每2小时记录一次箭尺读数,得到如表:供水时间x(小时)02468箭尺读数y(厘米)618304254【探索发现】①建立平面直角坐标系,如图②,横轴表示供水时间x.纵轴表示箭尺读数y,描出以表格中数据为坐标的各点.②观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.【结论应用】应用上述发现的规律估算:①供水时间达到12小时时,箭尺的读数为多少厘米?②如果本次实验记录的开始时间是上午8:00,那当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)【分析】【探索发现】①在平面直角坐标系中描出以表格中数据为坐标的各点即可;②观察上述各点的分布规律,可得它们是否在同一条直线上,设这条直线所对应的函数表达式为y=kx+b,利用待定系数法即可求解;【结论应用】应用上述发现的规律估算:①利用前面求得的函数表达式求出x=12时,y的值即可得出箭尺的读数;②利用前面求得的函数表达式求出y=90时,x的值,由本次实验记录的开始时间是上午8:00,即可求解.【解答】解:【探索发现】①如图②,②观察上述各点的分布规律,可得它们是否在同一条直线上,设这条直线所对应的函数表达式为y=kx+b,则,解得:,∴y=6x+6;结论应用】应用上述发现的规律估算:①x=12时,y=6×12+6=78,∴供水时间达到12小时时,箭尺的读数为78厘米;②y=90时,6x+6=90,解得:x=14,∴供水时间为14小时,∵本次实验记录的开始时间是上午8:00,8:00+14=22:00,∴当箭尺读数为90厘米时是22点钟.22.(9分)实践与探究操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则∠EAF=45度.操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则∠AEF=60度.在图②中,运用以上操作所得结论,解答下列问题:(1)设AM与NF的交点为点P.求证:△ANP≌△FNE;(2)若AB=,则线段AP的长为2﹣2.【分析】操作一:由正方形的性质得∠BAD=90°,再由折叠的性质得:∠BAE=∠MAE,∠DAF=∠MAF,即可求解;操作二:证△ANF是等腰直角三角形,得∠AFN=45°,则∠AFD=∠AFM=45°+∠NFE,求出∠NFE=∠CFE=30°,即可求解;(1)由等腰直角三角形的性质得AN=FN,再证∠NAP=∠NFE=30°,由ASA即可得出结论;(2)由全等三角形的性质得AP=FE,PN=EN,再证∠AEB=60°,然后由含30°角的直角三角形的性质得BE=AB=1,AE=2BE=2,AN=PN=a,AP=2PN=2a,由AN+EN=AE得出方程,求解即可.【解答】操作一:解:∵四边形ABCD是正方形,∴∠C=∠BAD=90°,由折叠的性质得:∠BAE=∠MAE,∠DAF=∠MAF,∴∠MAE+∠MAF=∠BAE+∠DAF=∠BAD=45°,即∠EAF=45°,故答案为:45;操作二:解:∵四边形ABCD是正方形,∴∠B=∠C=90°,由折叠的性质得:∠NFE=∠CFE,∠ENF=∠C=90°,∠AFD=∠AFM,∴∠ANF=180°﹣90°=90°,由操作一得:∠EAF=45°,∴△ANF是等腰直角三角形,∴∠AFN=45°,∴∠AFD=∠AFM=45°+∠NFE,∴2(45°+∠NFE)+∠CFE=180°,∴∠NFE=∠CFE=30°,∴∠AEF=90°﹣30°=60°,故答案为:60;(1)证明:∵△ANF是等腰直角三角形,∴AN=FN,∵∠AMF=∠ANF=90°,∠APN=∠FPM,∴∠NAP=∠NFE=30°,在△ANP和△FNE中,,∴△ANP≌△FNE(ASA);(2)由(1)得:△ANP≌△FNE,∴AP=FE,PN=EN,∵∠NFE=∠CFE=30°,∠ENF=∠C=90°,∴∠NEF=∠CEF=60°,∴∠AEB=60°,∵∠B=90°,∴∠BAE=30°,∴BE=AB=1,∴AE=2BE=2,设PN=EN=a,∵∠ANP=90°,∠NAP=30°,∴AN=PN=a,AP=2PN=2a,∵AN+EN=AE,∴a+a=2,解得:a=﹣1,∴AP=2a=2﹣2,故答案为:2﹣2.23.(10分)如图,在△ABC中,∠C=90°,AB=5,BC=3,点D为边AC的中点.动点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向点C运动,当点P不与点A、C重合时,连结PD.作点A关于直线PD的对称点A′,连结A′D、A′A.设点P的运动时间为t秒.(1)线段AD的长为2;(2)用含t的代数式表示线段BP的长;(3)当点A′在△ABC内部时,求t的取值范围;(4)当∠AA′D与∠B相等时,直接写出t的值.【分析】(1)由勾股定理求解.(2)分类讨论点P在AB及BC上运动两种情况.(3)分别求出点A'落在AB与BC上两个临界值求解.(4)分类讨论点P在AB及BC上两种情况,通过添加辅助线求解.【解答】解:(1)在Rt△ABC中,由勾股定理得:AC==4,∴AD=AC=2.故答案为:2.(2)当0<t≤5时,点P在线段AB上运动,PB=AB﹣AP=5﹣t,当5<t<8时,点P在BC上运动,PB=t﹣5.综上所述,PB=.(3)如图,当点A'落在AB上时,DP⊥AB,∵AP=t,AD=2,cosA=,∴在Rt△APD中,cosA===,∴t=.如图,当点A'落在BC边上时,DP⊥AC,∵AP=t,AD=2,cosA=,∴在Rt△APD中,cosA===,∴t=.如图,点A'运动轨迹为以D为圆心,AD长为半径的圆上,∴<t<时,点A'在△ABC内部.(4)如图,0<t<5时,∵∠AA'D=∠B=∠A'AD,∠ADP+∠A'AD=∠BAC+∠B=90°,∴∠ADP=∠BAC,∴AE=AD=1,∵cosA===,∴t=.如图,当5<t<8时,∵∠AA'B=∠B=∠A'AD,∠BAC+∠B=90°,∴∠BAC+∠A'AD=90°,∴PE∥BA,∴∠DPC=∠B,∵在Rt△PCD中,CD==2,CP=8﹣t,tan∠DPC=,∴tan∠DPC===,∴t=.综上所述,t=或.24.(12分)在平面直角坐标系中,抛物线y=2(x﹣m)2+2m(m为常数)的顶点为A.(1)当m=时,点A的坐标是(,1),抛物线与y轴交点的坐标是(0,);(2)若点A在第一象限,且OA=,求此抛物线所对应的二次函数的表达式,并写出函数值y随x的增大而减小时x的取值范围;(3)当x≤2m时,若函数y=2(x﹣m)2+m的最小值为3,求m的值;(4)分别过点P(4,2)、Q(4,2﹣2m)作y轴的垂线,交抛物线的对称轴于点M、N.当抛物线y=2(x﹣m)2+2m与四边形PQNM的边有两个交点时,将这两个交点分别记为点B、点C,且点B的纵坐标大于点C的纵坐标.若点B到y轴的距离与点C到x轴的距离相等,直接写出m的值.【分析】(1)将m=代入抛物线解析式中,即可得出顶点坐标,再令x=0,即可求得答案;(2)运用勾股定理建立方程求解即可;(3)分两种情况进行讨论:①当m<0时,2(2m﹣m)2+m=3,解方程即可得出答案;②当m>0时,2(m﹣m)2+m=3,解方程即可得出答案;(4)分情况讨论:当m>0时,若点B在PM边上,点C在MN边上,令y=2,则2=2(x﹣m)2+2m,解方程即可;若点B在PM边上,点C在NQ边上,则2﹣2m=m+,解方程即可;若点B在PQ边上,点C在NQ边上,则4=2﹣2m,不符合题意;当m<0时,若点B在NQ边上,点C在PM边上,无解.【解答】解:(1)当m=时,y=2(x﹣)2+1,∴顶点A(,1),令x=0,得y=,∴抛物线与y轴交点的坐标为(0,),故答案为:(,1),(0,);(2)∵点A(m,2m)在第一象限,且OA=,∴m2+(2m)2=()2,且m>0,解得:m=1,∴抛物线的解析式为y=2(x﹣1)2+2,当x<1时,函数值y随x的增大而减小;(3)∵当x≤2m时,若函数y=2(x﹣m)2+m的最小值为3,∴分两种情况:2m<m,即m<0时,或2m>m,即m>0时,①当m<0时,2(2m﹣m)2+m=3,解得:m=1(舍)或m=﹣,②当m>0时,2(m﹣m)2+m=3,解得:m=3,综上所述,m的值为﹣或3;(4)如图1,当m>0时,∵P(4,2)、Q(4,2﹣2m),∴M(m,2),N(m,2﹣2m),抛物线y=2(x﹣m)2+2m与四边形PQNM的边有两个交点,若点B在PM边上,点C在MN边上,∴令y=2,则2=2(x﹣m)2+2m,∴x=m+,(x=m﹣不符合题意,舍去),∴B(m+,2),C(m,2m),根据题意,得2m=m+,解得:m=,若点B在PM边上,点C在NQ边上,则2﹣2m=m+,解得:m=,若点B在PQ边上,点C在NQ边上,则4=2﹣2m,解得:m=﹣1<0,不符合题意;当m<0时,如图2,若点B在NQ边上,点C在PM边上,则2﹣2m=2(x﹣m)2+2m,∴x=m±,∴|m+|=2或|m﹣|=2,解得:m=±﹣3,综上所述,m的值为或或±﹣3.
2020吉林中考数学真题及答案(全卷满分120分,考试时间为120分钟)一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.6B.﹣6C.D.2.国务院总理李克强2020年5月
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国木瓜果酒行业市场竞争力策略及未来5发展趋势报告
- 2024-2030年中国服装行业营销策略及未来5发展趋势报告
- 2024至2030年中国植绒吸塑首饰盒行业投资前景及策略咨询研究报告
- 2024-2030年中国智慧园区行业发展模式规划分析报告
- 2024-2030年中国数据中心IT基础设施第三方服务行业发展模式及投资规模分析报告
- 齿轮箱课程设计书
- 2024-2030年中国摩托车铁制构件项目可行性研究报告
- 2024-2030年中国排汽管产业未来发展趋势及投资策略分析报告
- 2024-2030年中国拍卖行业经营创新模式及未来发展策略分析报告
- 2024至2030年硒酸酯多糖项目投资价值分析报告
- Unit4-Hows-the-weather-today-说课(课件)人教精通版英语四年级上册
- 大学新生心理压力与情绪管理策略与心理调整与发展计划
- 空乘人员生涯发展展示
- 黄旭华(修订版)
- 子宫内膜异位症术后护理课件
- 医疗器材广告推广方案
- 保险基础知识课件
- 病毒学-流感病毒的变异与预防策略教学教案
- 干部履历表(中共中央组织部2015年制)
- “订餐协议书:团体订餐服务合作协议”
- 小学各年级小学一年级提高思维能力的方法主题班会
评论
0/150
提交评论