2021年广东省中考数学试卷及解析(真题样卷)_第1页
2021年广东省中考数学试卷及解析(真题样卷)_第2页
2021年广东省中考数学试卷及解析(真题样卷)_第3页
2021年广东省中考数学试卷及解析(真题样卷)_第4页
2021年广东省中考数学试卷及解析(真题样卷)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年广东省中考数学试卷

一、选择题(本大题共10小题,每小题3分,共30分)

1.5的相反数是()

A.工B.5C.」D.-5

55

2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,

据商务部门发布的数据显示,2021年广东省对沿线国家的实际投资额超过

4000000000美元,将4000000000用科学记数法表示为()

A.0。4X109B.0。4XlOioC.4X109D.4XlOio

3.已知NA=70。,则NA的补角为()

A.110°B.70°C.30°D.20°

4.如果2是方程x2-3x+k=0的一个根,则常数k的值为()

A.1B.2C.-1D.-2

5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平

分分别为:90,85,90,80,95,则这组数据的众数是()

A.95B.90C.85D.80

6.下列所述图形中,既是轴对称图形又是中心对称图形的是()

A.等边三角形B.平行四边形C.正五边形D.圆

7.如图,在同一平面直角坐标系中,直线y=k.x(%W0)与双曲线y=丝(k?

W0)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()

V

A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2)

8.下列运算正确的是()

A.a+2a=3a2B.a3・a2=a5c.(a4)2=a6D.a4+a2=a4

9.如图,四边形ABCD内接于。O,DA=DC,ZCBE=50°,则NDAC的大小

C.65°D.50°

10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,

连接BF,下列结论:①S=S;②S=4S;③S=2S;@S

△ABFAADFACDFACEFAADF△CEF△

=2S,其中正确的是()

A.①③B.②③C.①④D.②④

二、填空题(本大题共6小题,每小题4分,共24分)

11.分解因式:a2+a=.

12.一个n边形的内角和是720。,则".

13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,

“<"或'=")

-la"6:;2’

14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,

3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是.

15.已知4a+3b=1,则整式8a+6b-3的值为.

16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片

ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按

图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,

则A、H两点间的距离为

三、解答题(本大题共3小题,每小题6分,共18分)

17.计算:|-7|-(1-兀)o+(2)-1.

18.先化简,再求值:(-J+J)•(X2-4),其中x=J^.

19学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,

女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理

40本,共能整理1240本.求男生、女生志愿者各有多少人?

四、解答题(本大题共3小题,每小题7分,共21分)

2)如图,在aABC中,ZA>ZB.

(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,

保留作图痕迹,不要求写作法);

(2)在(1)的条件下,连接AE,若NB=50。,求NAEC的度数.

21如图所示,已知四边形ABCD,ADEF都是菱形,ZBAD=ZFAD,ZBAD

为锐角.

(1)求证:AD±BF;

(2)若BF=BC,求NADC的度数.

22某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,

将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信

息回答下列问题:

体重频数分布表

组边体重(千人数

克)

A45<x<5012

B50WxV55m

C55<x<6080

D60Wx<6540

E65<x<7016

(1)填空:①m=(直接写出结果);

②在扇形统计图中,C组所在扇形的圆心角的度数等于_______度;

(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大

约有多少人?

体重扇形统计图

五、解答题(本大题共3小题,每小题9分,共27分)

2如图,在平面直角坐标系中,抛物线y=-x2+ax+b交x轴于A(1,0),B

(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点

c.

(1)求抛物线y=-x2+ax+b的解析式;

(2)当点P是线段BC的中点时,求点P的坐标;

(3)在(2)的条件下,求sinNOCB的值.

24.如图,AB是。O的直径,AB=4jj,点E为线段OB上一点(不与O,B

重合),作CELOB,交<30于点C,垂足为点E,作直径CD,过点C的切线

交DB的延长线于点P,AF1PC于点F,连接CB.

(1)求证:CB是NECP的平分线;

(2)求证:CF=CE;

25.如图,在平面直角坐标系中,。为原点,四边形ABCO是矩形,点A,C

的坐标分别是A(0,2)和C(26,0),点D是对角线AC上一动点(不与A,

C重合),逛SBD,作DELDB,交x轴于点E,以线段DE,DB为邻边作矩

形BDEF.

(1)填空:点B的坐标为;

(2)是否存在这样的点D,使得△口£€!是等腰三角形?若存在,请求出AD的

长度;若不存在,请说明理由;

(3)①求证:当当;

DB3

②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结

2021年广东省中考数学试卷

参考答案与试题解析

一、选择题(本大题共10小题,每小题3分,共30分)

1.5的相反数是()

A.=B.5C.2D.-5

55

【考点】14:相反数.

【分析】根据相反数的概念解答即可.

【解答】解:根据相反数的定义有:5的相反数是-

5.故选:D.

2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,

据商务部门发布的数据显示,2021年广东省对沿线国家的实际投资额超过

4000000000美元,将4000000000用科学记数法表示为()

A.0。4X109B.0o4XlOioC.4X109D.4XlOio

【考点】U:科学记数法一表示较大的数.

【分析】科学记数法的表示形式为aXIOn的形式,其中lW|a|V10,n为整数.确

定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点

移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1

时,n是负数.

【解答】解:

4000000000=4X109.故选:C.

3.已知NA=70。,则NA的补角为()

A.110°B.70°C.30°D.20°

【考点】IL:余角和补角.

【分析】由NA的度数求出其补角即可.

【解答】解:•••NA=70。,

,NA的补角为110。,

故选A

4.如果2是方程x2-3x+k=0的一个根,则常数k的值为()

A.1B.2C.-1D.-2

【考点】A3:一元二次方程的解.

【分析】把x=2代入已知方程列出关于k的新方程,通过解方程来求k的值.

【解答】解:•.•2是一元二次方程X2-3x+k=0的一个根,

A22-3X2+k=0,

解得,k=2.

故选:B.

5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平

分分别为:90,85,90,80,95,则这组数据的众数是()

A.95B.90C.85D.80

【考点】W5;众数.

【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.

【解答】解:数据90出现了两次,次数最多,所以这组数据的众数是

90.故选B.

6.下列所述图形中,既是轴对称图形又是中心对称图形的是()

A.等边三角形B.平行四边形C.正五边形D.圆

【考点】R5:中心对称图形;P3:轴对称图形.

【分析】根据中心对称图形和轴对称图形的定义对各选项进行判断.

【解答】解:等边三角形为轴对称图形;平行四边形为中心对称图形;正五边形

为轴对称图形;圆既是轴对称图形又是中心对称图形.

故选D.

7.如图,在同一平面直角坐标系中,直线y=k]X(k]W0)与双曲线y=丝(k2

WO)相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为()

A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2)

【考点】G8:反比例函数与一次函数的交点问题.

【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定

关于原点对称.

【解答】解:•••点A与B关于原点对称,

•♦.B点的坐标为(-1,-

2).故选:A.

8.下列运算正确的是()

A.a+2a=3a2B.a3・a2=a5c.(a4)2=a6D.a4+a2=a4

【考点】47:基的乘方与积的乘方;35:合并同类项;46:同底数累的乘法.

【分析】根据整式的加法和累的运算法则逐一判断即可.

【解答】解:A、a+2a=3a,此选项错误;

B、a3・a2=a5,此选项正确;

C、(a4)2=a8,此选项错误;

D、a4与a2不是同类项,不能合并,此选项错误;

故选:B.

9.如图,四边形ABCD内接于。O,DA=DC,ZCBE=50°,则NDAC的大小

为()

D

s

E

A.130°B,100°C.65°D.50°

【考点】M6;圆内接四边形的性质.

【分析】先根据补角的性质求出/ABC的度数,再由圆内接四边形的性质求出

ZADC的度数,由等腰三角形的性质求得NDAC的度数.

【解答】M:VZCBE=50°,

.,.ZABC=180°-ZCBE=180°-50°=130°,

•.•四边形ABCD为。O的内接四边形,

.,.ZD=180°-ZABC=180°-130°=50°,

VDA=DC,

18。°-ND

ZDAC==65°,

故选C.

10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,

连接BF,下列结论:①S.F=SDDF;②SSDF=4S*EF;③④合

A.①③B.②③C.①④D.②④

【考点】LE:正方形的性质.

【分析】由4AFD也△AFB,即可推出SI=S..ADF,故①正确,由BE=EC4

S=4SJ

BCaAD,AD//EC,推出黑察黔,可得$冲=2$即AADFACEF

S=2S,故②③错误④正确,由此即可判断.

△ADF2\CDF

【解答】解:•••四边形ABCD是正方形,

,AD〃CB,AD=BC=AB,NFAD=NFAB,

在4AFD和△AFB中,

rAF=AF

,/FAD二NFAB,

AD二AB

.,.△AFD^AAFB,

AS=S,故①正确,

△ABFAADF

11

,.,BE=EC=yBC=^AD,AD〃EC,

.EC_CF_EF_1

,,AD-AF-DF_2,

.S=2S,S=4S,S=2S

*"&CDFACEFAADFACEFAADFACDF

故②③错误④正确,

故选C.

二、填空题(本大题共6小题,每小题4分,共24分)

11.分解因式:a2+a=a(a+1).

【考点】53:因式分解-提公因式法.

【分析】直接提取公因式分解因式得出即可.

【解答】解:a2+a=a

(a+1).故答案为:a

(a+1).

12.一个n边形的内角和是720。,则H6

【考点】L3:多边形内角与外角.

【分析】多边形的内角和可以表示成(n-2)180°,依此列方程可求解.

【解答】解:设所求正n边形边数为n,

则(n-2)•180°=720°,

解得n=6.

13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b<0.(填“

“<"或'=")

-420112,

【考点】2A:实数大小比较;29:实数与数轴.

【分析】首先根据数轴判断出a、b的符号和二者绝对值的大小,根据“异号两数

相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值”来解答即可.

【解答】解::a在原点左边,b在原点右边,

/.a<0<b,

•••a离开原点的距离比b离开原点的距离大,

•,.|a|>|b|,

a+b<0.

故答案为:<.

14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,

3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是f.

【考点】X4:概率公式.

【分析】确定出偶数有2个,然后根据概率公式列式计算即可得解.

【解答】解:个小球中,标号为偶数的有2、4这2个,

...摸出的小球标号为偶数的概率是看,

9

故答案为:f

15.已知4a+3b=1,则整式8a+6b-3的值为-1.

【考点】33:代数式求值.

【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.

【解答】解:•••4a+3b=1,

8a+6b=2,8a+6b

-3=2-3=-1;故答

案为:-L

16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片

ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按

图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,

则A、H两点间的距离为VTO.

AD月…月.…p

4

图(2)图(3)

【考点】PB:翻折变换(折叠问题);LB:矩形的性质.

【分析】如图3中,连接AH.由题意可知在RtAAEH中,AE=AD=3,EH=EF

-HF=3-2=1,«AH=VAE2+EH2,计算即可.

【解答】解:如图3中,连接AH.

A.…p

4

图(3)

由题意可知在RtAAEH中,AE=AD=3,EH=EF-HF=3-2=1,

...AH=VAE2+EH2=V324-12=^,

故答案为收.

三、解答题(本大题共3小题,每小题6分,共18分)

17.计算:|-7|-(1-力。+(y)-1.

【考点】2C:实数的运算;6E:零指数累;6F:负整数指数累.

【分析】直接利用绝对值的性质以及零指数塞的性质和负整数指数毒的性质分别

化简求出答案.

【解答】解:原式=7-1+3

=9.

18.先化简,再求值:(*■+*■),(x2-4),其中x="5.

【考点】6D:分式的化简求值.

【分析】先计算括号内分式的加法,再计算乘法即可化简原式,将x的值代入求

解可得.

x+2x—2

【解答】解:原式=[(X+2)&-2)+(X+2)&-2)”(X+2)(x-2)

=(x+2;Z・2)・(x+2)(x-2)

=2x,

当乂=祈时,

原式=2日

19学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理30本,

女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理

40本,共能整理1240本.求男生、女生志愿者各有多少人?

【考点】9A:二元一次方程组的应用.

【分析】设男生志愿者有x人,女生志愿者有y人,根据“若男生每人整理30本,

女生每人整理20本,共能整理680本;若男生每人整理50本,女生每人整理

40本,共能整理1240本“,即可得出关于x、y的二元一次方程组,解之即可得

出结论

【解答】解:设男生志愿者有X人,女生志愿者有y人,

根据题意得:了管售,

[50x+40y=1240

解得:

I厂16

答:男生志愿者有12人,女生志愿者有16人.

四、解答题(本大题共3小题,每小题7分,共21分)

2)如图,在AABC中,ZA>ZB.

(1)作边AB的垂直平分线DE,与AB,BC分别相交于点D,E(用尺规作图,

保留作图痕迹,不要求写作法);

(2)在(1)的条件下,连接AE,若NB=50。,求NAEC的度数.

【考点】N2:作图一基本作图;KG:线段垂直平分线的性质.

【分析】(1)根据题意作出图形即可;

(2)由于DE是AB的垂直平分线,得到AE=BE,根据等腰三角形的性质得到

ZEAB=ZB=50°,由三角形的外角的性质即可得到结论.

【解答】解:(1)如图所示;

(2):DE是AB的垂直平分线,

:.AE=BE,

/.ZEAB=ZB=50o,

ZAEC=ZEAB+ZB=100°.

21如图所示,已知四边形ABCD,ADEF都是菱形,NBAD=NFAD,ZBAD

为锐角.

(1)求证:AD1BF;

(2)若BF=BC,求NADC的度数.

【考点】L8:菱形的性质.

【分析】(1)连结DB、DF.根据菱形四边相等得出AB=AD=FA,再利用SAS

证明△BADg^FAD,得出DB=DF,那么D在线段BF的垂直平分线上,又

AB=AF,即A在线段BF的垂直平分线上,进而证明AD1BF;

(2)设ADLBF于H,作DG_LBC于G,证明DG=,CD.在直角4CDG中得

出NC=30。,再根据平行线的性质即可求出NADC=180。-ZC=150°.

【解答】(1)证明:如图,连结DB、DF.

•••四边形ABCD,ADEF都是菱形,

AB=BC=CD=DA,AD=DE=EF=FA.

在4BAD与4FAD中,

"AB=AF

-ZBAD=ZFAD,

AD二AD

.,.△BAD^AFAD,

,DB=DF,

...D在线段BF的垂直平分线上,

VAB=AF,

...A在线段BF的垂直平分线上,

.二AD是线段BF的垂直平分线,

Z.AD1BF;

(2)如图,设ADLBF于H,作DG_LBC于G,则四边形BGDH是矩形,

1

,DG=BH=qBF.

VBF=BC,BC=CD,

1

:.DG=]CD.

在直角4CDG中,VZCGD=90°,DG=~CD,

.,.ZC=30°,

•.•BC〃AD,

ZADC=180°-ZC=150°.

2某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,

将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图标信

息回答下列问题:

体重频数分布表

组边体重(千人数

克)

A45WxV5012

B50Wx<55m

C55Wx<6080

D60WxV6540

E65WxV7016

(1)填空':0m=52(直接写出结果);

②在扇形统计图中,C组所在扇形的圆心角的度数等于144度;

(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大

约有多少人?

体重扇形统计图

【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.

【分析】(1)①根据D组的人数及百分比进行计算即可得到m的值;②根据C

组的百分比即可得到所在扇形的圆心角的度数;

(2)根据体重低于60千克的学生的百分比乘上九年级学生总数,即可得到九年

级体重低于60千克的学生数量.

【解答】解:(1)①调查的人数为:404-20%=200(人),

.\m=200-12-80-40-16=52;

②C组所在扇形的圆心角的度数为谯"><3600=144。;

故答案为:52,144;

12+52+80

(2)九年级体重低于60千克的学生大约有一丽一X1000=720(人).

五、解答题(本大题共3小题,每小题9分,共27分)

23如图,在平面直角坐标系中,抛物线y=-x2+ax+b交x轴于A(1,0),B

(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点

C.

(1)求抛物线y=-x2+ax+b的解析式;

(2)当点P是线段BC的中点时,求点P的坐标;

(3)在(2)的条件下,求sinNOCB的值.

【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:

解直角三角形.

【分析】(1)将点A、B代入抛物线y=-x2+ax+b,解得a,b可得解析式;

(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解

析式,易得P点坐标;

(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,

利用sin/OCB噂可得结果.

【解答】解:(1)将点A、B代入抛物线y=-x2+ax+b可得,

0=-l+a+b

0=~3+3a+b

解得,a=4,b=-3,

二抛物线的解析式为:y=-x2+4x-3;

(2)•.•点C在y轴上,

所以C点横坐标x=0,

•.•点P是线段BC的中点,

一0+33

二点P横坐标xp=-

•.•点P在抛物线y=-x2+4x-3上,

,',yp=-(y)

.,.点P的坐标为得,总);

(3)•.,点P的坐标为卷,看),点P是线段BC的中点,

.,.点C的纵坐标为2X-1-0专,

3

.•.点C的坐标为(0,亍),

;.BC=^?^=婴

0B市V5

.,.sinZOCB=BC=2="2".

3

24.如图,AB是。。的直径,AB=46,点E为线段0B上一点(不与O,B

重合),作CEL0B,交。。于点C,垂足为点E,作直径CD,过点C的切线

交DB的延长线于点P,AFJ_PC于点F,连接CB.

(1)求证:CB是/ECP的平分线;

(2)求证:CF=CE;

(3)当崔普时,求劣弧氏的长度(结果保留力

【考点】S9:相似三角形的判定与性质;M2:垂径定理;MC:切线的性质;

MN:弧长的计算.

【分析】(1)根据等角的余角相等证明即可;

(2)欲证明CF=CE,只要证明4ACF丝Z\ACE即可;

(3)作BMLPF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,

利用相似三角形的性质求出BM,求出tan/BCM的值即可解决问题;

【解答】(1)证明:•••0C=0B,

.,.Z0CB=Z0BC,

「PF是。0的切线,CE1AB,

.,.ZOCP=ZCEB=90°,

.,.ZPCB+ZOCB=90°,NBCE+NOBC=90。,

/.ZBCE=ZBCP,

ABC平分NPCE.

(2)证明:连接AC.

VAB是直径,

/.ZACB=90°,

,ZBCP+ZACF=90°,ZACE+ZBCE=90°,

VZBCP=ZBCE,

.*.ZACF=ZACE,

VZF=ZAEC=90°,AC=AC,

.'.△ACF^AACE,

,CF=CE.

(3)解:作BM_LPF于M.则CE=CM=CF,设CE=CM=CF=4a,PC=4a,PM=a,

VABMC^APMB,

;.BM2=CM・PM=3a2,

;.BM=瞩,

tanZBCM='^=^,

CM3

.•.NBCM=30°,

:.ZOCB=ZOBC=ZBOC=60°,

25.如图,在平面直角坐标系中,0为原点,四边形ABCO是矩形,点A,C

的坐标分别是A(0,2)和C(2点,0),点D是对角线AC上一动点(不与A,

C重合),连结BD,作DELDB,交x轴于点E,以线段DE,DB为邻边作矩

形BDEF.

(1)填空:点B的坐标为(2退,2);

(2)是否存在这样的点D,使得ADEC是等腰三角形?若存在,请

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论