下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本资料分享自千人教师QQ群323031380期待你的加入与分享本资料分享自千人教师QQ群323031380期待你的加入与分享用函数模型解决实际问题【教学目标】1.通过利用已知函数模型解决实际问题,提升数学建模素养。2.通过建立数学模型解决实际问题,培养数据分析、数学运算素养。【教学重难点】1.会利用已知函数模型解决实际问题。(重点)2.能建立函数模型解决实际问题。(重、难点)【教学过程】一、基础铺垫常用的函数模型:二、新知探究1.表格信息类建模问题【例1】某国2015年至2018年国内生产总值(单位:万亿元)如下表所示:年份2015201620172018x(年)0123生产总值(万亿元)8.20678.94429.593310.2398(1)画出函数图形,猜想它们之间的函数关系,近似地写出一个函数关系式;(2)利用得出的关系式求生产总值,与表中实际生产总值比较;(3)利用关系式预测2019年该国的国内生产总值。[解](1)根据表中数据画出函数图形,如图所示。从函数的图形可以看出,画出的点近似地落在一条直线上,设所求的函数为y=kx+B.把直线通过的两点(0,8.2067)和(3,10.2398)代入上式,解方程组,可得k=0.6777,b=8.2067.所以它的一个函数关系式为y=0.6777x+8.2067.(2)由(1)中得到的关系式为f(x)=0.6777x+8.2067,计算出2016年和2017年的国内生产总值分别为f(1)=0.6777×1+8.2067=8.8844,f(2)=0.6777×2+8.2067=9.5621.与实际的生产总值相比,误差不超过0.1万亿元。(3)2019年,即x=4,由上述关系式,得y=f(4)=0.6777×4+8.2067=10.9175,即预测2019年该国的国内生产总值约为10.9175万亿元。【教师小结】(1)根据表格信息,画出图像;(2)根据图像特征,选定函数模型;(3)用待定系数法求出函数解析式;(4)检验模型。2.图像信息解读问题【例2】如图1是某公共汽车线路收支差额y元与乘客量x的图像。图1图2图3(1)试说明图1上点A、点B以及射线AB上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为盈的建议,如图2、3所示。你能根据图像,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么?(4)图1、图2、图3中的票价分别是多少元?[解](1)点A表示无人乘车时收支差额为-20元,点B表示有10人乘车时收支差额为0元,线段AB上的点表示亏损,AB延长线上的点表示盈利。(2)图2的建议是降低成本,票价不变,图3的建议是提高票价。(3)斜率表示票价。(4)图1、2中的票价是2元,图3中的票价是4元。【教师小结】(1)这类问题应结合图像的特征,观察坐标轴所代表的含义,紧扣题目的语言描述,并把它转化为数学特征(单调性、最值、解析式等)即可解决。(2)挖掘图像中的信息是关键。三、课堂总结1.函数模型的应用实例主要包括2个方面:(1)利用给定的函数模型解决实际问题;(2)建立确定性的函数模型解决实际问题;2.在引入自变量建立目标函数解决函数应用题时,一是要注意自变量的取值范围,二是要检验所得结果,必要时运用估算和近似计算,以使结果符合实际问题的要求。3.在实际问题向数学问题的转化过程中,要充分使用数学语言,如引入字母、列表、画图等使实际问题数学符号化。四、课堂检测1.思考辨析(1)在建立实际问题的函数模型时,除了要考虑变量的数学意义,还要考虑变量的实际意义。()(2)由函数模型得到的解就是实际问题的解。()[答案](1)√(2)×2.某同学家门前有一笔直公路直通长城,星期天,他骑自行车匀速前往,他先前进了akm,觉得有点累,就休息了一段时间,想想路途遥远,有些泄气,就沿原路返回骑了bkm(b<a),当他想起诗句“不到长城非好汉”时,便调转车头继续前进,则该同学离起点的距离与时间的函数关系图像大致为()ABCDC[由题意可知,s是关于时间t的一次函数,所以其图像特征是直线上升。由于中间休息了一段时间,该段时间的图像应是平行于横轴的一条线段。然后原路返回,图像下降,再调转车头继续前进,则直线一致上升。故选C.]3.国内快递1000g以内的包裹的邮资标准如下表:运送距离x(km)0<x≤500500<x≤10001000<x≤1500…邮资y(元)5.006.007.00…如果某人在西安要快递800g的包裹到距西安1200km的某地,那么他应付的邮资是()A.5.00元 B.6.00元C.7.00元 D.8.00元C[由题意可知,当x=1200时,y=7.00元,故选C.]4.要在墙上开一个上部为半圆,下部为矩形的窗户,如图所示,窗框为定长l的条件下,要使窗户透光面积S最大,窗户应具有怎样的尺寸?[解]由题意得窗框总长l=eq\f(π,2)x+x+2y,∴y=eq\f(2l-π+2x,4),∴S=eq\f(π,8)x2+xy=eq\f(π,8)x2+x·eq\f(2l-π+2x,4)=-eq\f(π+4,8)eq\b\lc\(\rc\)(\a\vs4\al\co1(x-\f(2l,π+4)))2+eq\f(l2,2π+4)。由eq\b\lc\{\rc\(\a\vs4\al\co1(x>0,,y=\f(2l-π+2x,4)>0,))得x∈eq\b\lc\(\r
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 抵押反担保合同的风险控制策略
- 物理治疗的临床应用
- 汽车海运运输合同范本
- 房地产营销合同书格式模板
- 《金色的草地》作业设计方案
- 肝癌并发低血糖护理
- 年产xxx水下作业工具项目建议书
- 腹膜水泥模板项目立项申请报告
- 年产xxx瓦锅项目投资分析报告
- 年产xx无碱玻璃球项目建议书
- 《“119”的警示》教学设计+学习任务单道德与法治2024-2025学年三年级上册统编版
- 2024年海南省中考数学试题卷(含答案解析)
- 油气开发地质学智慧树知到答案2024年中国地质大学(武汉)
- 腰椎术后脑脊液漏的护理
- (2024)全国青少年“学宪法、讲宪法”竞赛题库及答案
- 辽宁省2024年中考英语真题【附真题答案】
- 办公家具供货安装、保障实施及售后服务 投标方案(技术方案)
- 八年级上册(2024修订) 第四单元 整本书阅读 《红岩》导读课公开课一等奖创新教学设计
- 泊车辅助系统设计
- 第19讲 影响盐类水解的主要因素及盐类水解的应用 (教师版)【暑假弯道超车】2024年新高二化学暑假讲义+习题(人教版2019选择性必修1)
- 2024年湖南广电国家广电集团招聘笔试冲刺题(带答案解析)
评论
0/150
提交评论