




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BeyondtheAnnualAverages:Impactof
SeasonalTemperatureonEmploymentGrowthinUSCountiesHaNguyenWP/23/142IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.2023JUN©2023InternationalMonetaryFundWP/23/142IMFWorkingPaperInstituteofCapacityDevelopmentBeyondtheAnnualAverages:ImpactofSeasonalTemperatureonEmploymentGrowthinUS
CountiesPreparedbyHaNguyen*Authorizedfordistributionby
MercedesGarcia-EscribanoJune2023IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.
TheviewsexpressedinIMFWorkingPapersarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,or
IMFmanagement.ABSTRACT:Usingquarterlytemperatureandemploymentdatabetween1990and2021,thispaperuncoversnuancedevidenceontheimpactofseasonaltemperaturewithinUScounties:higherwintertemperatureincreasesprivatesectoremploymentgrowthwhilehighersummertemperaturedecreasesit.Theimpactsofhighertemperatureinmildseasons,fallandspring,arestatisticallyinsignificant.Moreover,thenegativeimpactofhighersummertemperaturepersistswhilethepositiveimpactofhighertemperatureinthewinterismoreshort-lived.Thenegativeeffectsofahottersummerarepervasiveandpersistentinmanysectors:mostsignificantlyin“Construction”and“LeisureandHospitality”butalsoin“Trade,Transport,andUtilities”and“FinancialActivities.”Incontrast,thepositiveeffectsofawarmerwinterarelesspervasive.
Theemploymenteffectofahottersummerhasbeenmoresevereinrecentdecades.RECOMMENDEDCITATION:
Nguyen,H.(2023).BeyondtheAnnualAverages:Impactof
SeasonalTemperatureonEmploymentGrowthinUSCounties.
IMF
Working
Papers,
2023/142JELClassificationNumbers:Keywords:C33,C55,E24,O44,Q54Climatechange;temperature;employment;UScountiesHnguyen7@Author’sE-MailAddress:IthankRabahArezki,BasBakker,AdolfoBarajas,RudolfsBems,AndrewBerg,MaiDao,MercedesGarcia-Escribano,HuiHe,ToanPhan,KoralaiKirabaeva,VladimirKlyuev,AntonKorinek,RuyLama,EmanueleMassetti,RodolfoMaino,JoeProcopio,NoomanRebei,NikolaSpataforaandMaryamVaziriforveryhelpfulcommentsandfeedback,andRuchunLiforeditorialhelp.IamgratefultoBerkayAkyapiandEmanueleMassettiforintroducingtomeclimatedataviaGoogleEarthEngine.WORKINGPAPERSBeyondtheAnnualAverages:Impactof
SeasonalTemperatureonEmploymentGrowthinUSCountiesPreparedby
HaNguyen11
IthankRabahArezki,BasBakker,AdolfoBarajas,RudolfsBems,AndrewBerg,MaiDao,MercedesGarcia-Escribano,HuiHe,ToanPhan,KoralaiKirabaeva,VladimirKlyuev,AntonKorinek,RuyLama,EmanueleMassetti,RodolfoMaino,
JoeProcopio,NoomanRebei,NikolaSpataforaandMaryamVaziriforveryhelpfulcommentsandfeedback,andRuchunLiforeditorialhelp.IamgratefultoBerkayAkyapiandEmanueleMassettiforintroducingtomeclimatedataviaGoogleEarthEngine.IMFWORKINGPAPERSBeyondtheAnnualAverages:ImpactofSeasonalTemperatureonEmploymentGrowthinUSCountiesContentsI.
Introduction
4II.
ATheoreticalFramework
6III.
DataandEmpiricalSpecification9Data9EmpiricalSpecifications
10IV.
MainFindings
11AnnualRegressions
11MainFindings12V.
SummerandWinterImpactsAcrossState’sClimate15VI.
OntheMechanismsoftheSummerTemperatureEffects18VII.
OntheMechanismsoftheWinterTemperatureEffects21VIII.Effects
ofTemperaturebyDecade
23IX.
RobustnessChecks26NotUsingCountyEmploymentWeights
26DroppingExtremeEmploymentGrowth27DroppingRecessionQuarters27ControllingforNaturalDisasters
28ControllingforPrecipitation
29X.
Conclusions30References30FiguresFigure1:DynamicImpactonYoYEmploymentGrowthtoaOneDegreeFahrenheitHigherTemperature14Figure2:AverageSummerImpactbyState16Figure3:AverageWinterImpactbyState
17Figure4:TheEffectonEmploymentGrowthofHigherSummerTemperaturebySector19Figure5:TheEffectofHigherWinterTemperaturebySector21Figure6:AverageEmploymentSharesintheSummerandWinterinaCounty
23Figure7:AverageAnnualIncreaseinSummerTemperaturebyStateover1990and2021
24Figure8:DynamicImpactofYoYEmploymentGrowthtoaOneDegreeFahrenheitHigherTemperature(RegressionsareUnweighted)262IMFWORKINGPAPERSBeyondtheAnnualAverages:ImpactofSeasonalTemperatureonEmploymentGrowthinUSCountiesFigure9:DynamicImpactonYoYEmploymentGrowthtoaOneDegreeFahrenheitHigherTemperature(TopandBottom1percentileofEmploymentGrowthDataareDropped)27Figure10:DynamicImpactonYoYEmploymentGrowthtoaOneDegreeFahrenheitHigherTemperature(EmploymentGrowthDataforRecessionaryQuartersareDropped)28Figure11:DynamicImpactonYoYEmploymentGrowthtoaOneDegreeFahrenheitHigherTemperature(ControllingforNaturalDisasters)29Figure12:DynamicImpactonYoYEmploymentGrowthtoaOneDegree
FahrenheitHigherTemperature(ControllingforPrecipitation)29TablesTable1:SummaryStatistics
10Table2:ImpactofAnnualAverageTemperatureonYoYGrowthofAnnualAverageEmployment
11Table3:ImpactofTemperatureonYoYPrivateEmploymentGrowth
12Table4:RelationshipbetweenEmploymentEffectandaState’sClimate18Table5:ImpactofTemperaturebyDecade253IMFWORKINGPAPERSBeyondtheAnnualAverages:ImpactofSeasonalTemperatureonEmploymentGrowthinUSCountiesI.
IntroductionClimate
change
is
the
biggest
challenge
for
humankind.
Temperature
is
rising.
The
global
average
temperatureisalreadyabout1.2degree
Celsiushigherthanthepre-industriallevel.Droughts,wildfires,andmassivestormsare
starting
to
occur
more
frequently
with
devastating
effects.
Understanding
the
impact
of
rising
temperature,the
most
basic
manifestation
of
climate
change,
on
economic
activity
is
fundamental
to
adaptation
and
mitigationefforts.The
economic
literature
has
generally
found
that
higher
temperature
hurts
economic
activity.
Early
literatureexamines
the
relationship
between
average
temperature
and
aggregate
economic
variables
(e.g.,
Sachs
andWarner,
1997;
Gallup,
Sachs,
and
Mellinger,
1999).
It
finds
that
hotter
countries
tend
to
be
poorer.
However,
thisrelationshipmightbedrivenbyomittedvariablessuchascountryinstitutions.Recentliteratureusesfluctuationsin
temperature
within
a
country
or
a
region
to
control
for
slow-moving
characteristics
(see
for
example,
Dell
et
al.,2012;Cashin
etal.,2017;Colacitoetal.,2019;LettaandTol,2019;Acevedoetal.,2020;Kahnetal.,2021).1
Itfinds
that
higher
temperature
reduces
the
economic
growth
of
poor
countries
(Dell
et
al.,
2012;
Acevedo
et
al.,2020)
and
the
US
(Colacito
et
al.,
2019).
The
negative
effects
run
through
reduced
total
factor
productivity
growth(Letta
and
Tol,
2019),
and
reduced
investment
and
labor
productivity
(Acevedo
et
al.,
2020;
Kalkuhl
and
Wenz,2020).
Burke
et
al.
(2015)
document
the
non-linear
effect
of
temperature:
economic
growth
rises
with
averageannualtemperatureuntilaround13
degreesCelsiusanddropsafterthat.This
paper
examines
the
dynamic
effects
of
temperature
on
the
private
sector’s
employment
growth
at
a
locallevel,
namely
US
county,
and
high
frequency,
namely
quarterly.
Going
to
the
county
and
quarterly
levels
allowsfor
more
precise
temperature
measurement.
Therefore,
it
could
estimate
the
effects
of
temperature
moreprecisely
and
uncover
the
subtle
effect
of
seasonal
temperature.
This
paper
focuses
on
job
growth
as
the
maineconomic
outcome.
Jobs
are
featured
prominently
in
the
US's
discussions
of
climate
change
mitigations.
Manyworry
that
climate
change
mitigation
efforts
willhurtjobs
(AFP,
2022).
This
paper
finds
that
higher
temperature,onaverage,hurtsjobsintheUS.Using
data
between
1990
and
2021,
this
paper
discovers
opposing
effects
of
higher
temperature
in
the
winterand
summer.
On
average,
within
a
county,
higher
summer
temperature
reduces
private
sector
employmentgrowth,
while
higher
winter
temperature
increases
it.
The
impacts
of
higher
temperature
in
mild
seasons,
fall
andspring,
are
statistically
insignificant.
The
findings
showcase
the
heterogenous
and
nuanced
effects
oftemperatureshocks.This
paper
finds
interesting
dynamic
effects
of
seasonal
temperature.
Higher
summer
temperature
hurtseconomic
activity
in
the
current
and
following
quarters.
A
temporary
one-degree
Fahrenheit
(F)
higher
summertemperature
decreases
year-over-year
(YoY)
employment
growth
of
that
summer
by
0.063
percent.
It
alsodecreases
YoY
employment
growth
of
the
following
fall
and
winter
by
0.08
and
0.075
percent,
respectively.
Incontrast,
the
positive
impact
of
higher
temperature
in
the
winter
is
more
short-lived.
A
temporary
one-degreeFahrenheit
warmer
winter
boosts
YoY
employment
growth
in
that
winter
by
0.05
percent
but
has
statisticallyinsignificant
effects
on
employment
growth
in
the
following
spring
and
summer.
In
sum,
the
negative
impacts
of1
AlsoseerecentsurveysbyDelletal.(2014)andAuffhammer(2018)IMFWORKINGPAPERSBeyondtheAnnualAverages:ImpactofSeasonalTemperatureonEmploymentGrowthinUSCountieshigher
temperature
in
the
summer
are
larger
and
more
persistent
than
the
positive
impacts
of
higher
temperatureinthewinter.Therefore,theaverageemploymenteffectofhighertemperatureacrossseasonsisnegative.The
economic
literature
typically
examines
the
impact
of
annual
average
temperature
on
annual
economicoutcomes
(e.g.,
see
Deschênes
and
Greenstone,
2007;
Dell
et
al.,
2012;
Burke
et
al.,
2015;
Acevedo
et
al.,
2020;Kalkuhl
and
Wenz,
2020;
Akyapi
et
al.,
2022).
However,
since
temperature
can
vary
greatly
within
a
year,
fromfreezing
winters
to
scorching
summers,
this
paper
argues
that
seasonal
temperature
is
a
better
approximation
ofweather
than
annual
temperature.2
More
importantly,
the
economic
structures
of
different
seasons
could
be
verydifferent.
For
example,
construction,
travel,
and
tourism
are
expected
to
rise
in
summer
and
fall
in
winter.Therefore,
examining
the
effects
of
seasonal
temperature
on
seasonal
economic
activity
could
offer
new
insightsto
complement
the
existing
analyses
using
annual
average
temperature
and
annual-average
economicoutcomes.
In
addition,
working
with
the
country-average
temperature
is
also
not
ideal
since
even
within
a
country,temperature
can
vary
greatly.
A
country,
or
even
a
US
state,
may
have
several
climate
zones.
A
case
of
localizedtemperature,suchasatthecountylevel,canbemadehere.Nevertheless,granularanalysescomewiththeirchallengesandissues.First,andthemostobvious
issueisthelack
of
high-frequency
economic
data
at
the
local
level.
One
reason
why
employment
growth
is
chosen
as
themain
variableof
interest
isthat
the
US
has
reliablequarterly
data
atthe
countylevel(more
on
thatin
sectionIII).The
second,
and
more
conceptual
issue
is
labor
mobility
at
the
local
level.
At
the
country
level,
labor
mobility
isrelatively
restricted.
At
least
in
the
short-run,
workers
have
to
stay
in
a
country
and
try
to
find
work
with
atemperature
shock.
But
an
analysis
at
the
local
level,
such
as
US
county,
implies
labor
mobility
is
much
lessrestricted.
People
could
move
in
and
out
of
a
county
to
work
in
another
county
in
response
to
a
temperatureshock.Therefore,theeffectsoftemperature
onemploymentwithlabormobilitycanbelargerthanwithout.Deryugina
and
Hsiang
(2017)
and
Colacito
et
al.
(2019)
examine
the
impacts
of
seasonal
temperature
at
UScounty
and
state
levels,
respectively.
However,
they
still
use
annual
economic
outcomes,
which
could
maskinteresting
dynamic
effects
of
seasonal
temperature.
This
analysis
complements
their
analyses
by
not
focusingon
annual
economic
outcomes
but
on
the
high-frequency
impact
of
temperature
on
quarterly
employment
growthin
US
counties.
By
adopting
this
local
and
high-frequency
empirical
framework
together,
it
unveils
novel
andinteresting
dynamic
effects
of
seasonal
temperature.
It
could
also
shed
lighton
the
mechanisms
by
documentingthe
effects
in
each
industry
and
how
they
propagate
over
the
next
quarters.
In
other
words,
by
observingtemperature’simpactsondifferentsectorsatahighfrequency,insteadofbeingdilutedbytheannualaverages,thepapercanprovideadditionalinsightsintothemechanisms.This
paperfinds
thatthe
negative
effects
of
a
hotter
summerare
pervasive
andpersistent
in
many
sectors:
mostsignificantly
in
“Construction”
and
“Leisure
and
Hospitality”
but
also
in
“Trade,
Transport
and
Utilities”
and“Financial
Activities.”
Employment
growth
in
these
sectors
may
get
directly
hit
by
rising
temperature.
It
is
alsopossible
that
some
of
the
lower
employment
growth
is
indirectly
affected
due
to
input-output
linkages
betweendifferent
sectors
or
the
aggregate
demand
effect.
For
example,
job
growth
in
“Financial
Activities”
could
bedampened
due
to
a
slower
financial
service
demand
from
“Construction.”
In
contrast,
the
positive
effects
of
a2
Forexample,highestdailytemperatureinWashingtonD.C.
(UnitedStates)in2021rangesfromthemid-30sFahrenheitinthewintertothemid-90sFahrenheitinthesummer.TheaverageannualtemperatureforWashingtonD.C.isabout
70-degreeFahrenheit.Ifweusethisannualaverageof70-degreeFahrenheitinouranalyses,wemightbemistakenthatWashingtonD.C.’sweatherismore
moderatewhileinfact,ithasacoldwinterandahotsummer.IMFWORKINGPAPERSBeyondtheAnnualAverages:ImpactofSeasonalTemperatureonEmploymentGrowthinUSCountieswarmer
winter
are
less
pervasive,
only
in
“Construction,”
“Leisure
and
hospitality,”
and
“Natural
Resources
andMining.”Itisalsomoreshort-lived.The
richness
of
county-level
data
allows
for
the
examination
of
the
effect
by
US
state
–
which
is
another
importantcontribution.
This
paper
discovers
a
relationship
between
the
negative
effects
of
a
hotter
summer
with
a
state’ssummer
climate:
hotter
states
have
more
severe
negative
impacts
of
higher
summer
temperature.
Some
coolerstates
(e.g.,
Alaska
and
Massachusetts)
even
benefit
from
the
higher
summer
temperature.
On
the
other
hand,therelationshipbetweentheimpactofhigherwintertemperatureandastate’swinterclimate
isnotasclear.An
important
point
of
discussion
is
how
would
these
findings
on
short-term
responses
help
us
predict
the
long-term
responses
to
hotter
climates?
It
has
been
argued
that
the
short-run
responses
to
temperature
fluctuationsare
likely
not
the
same
as
the
long-run
responses
to
climate
change
(see
the
discussion
in
Burke
and
Emerick,2016,
for
example).
This
is
a
reasonable
argument.
First,
the
future
magnitude
of
climate
change
is
uncertain,dependingon
humankind’s
mitigationefforts.Inaddition,therecouldbearoleofadaptation.Adaptationefforts,such
as
more
widespread
use
of
drought-resistant
seeds
or
air-conditioning,
might
soften
the
impact
of
risingtemperature
in
the
future.
If
so,
the
short-run
impacts
may
overstate
the
long-run
impacts
of
climate
(see
alsoMassetti
and
Mendelsohn,
2018).
Conversely,
the
rising
temperature
may
cause
permanent
effects
onemployment
(such
as
emigration
out
of
the
hot
areas).
In
that
case,
the
short-term
impacts
of
temperaturefluctuationmightunderstatethelong-runimpactsofclimatechange.This
paper
contributes
to
this
discussion
with
two
sets
of
findings.
First,
a
warmer
winter
helps
economic
activities,whileahottersummerhurtsthem.Inaddition,thenegativeeffectsofahottersummerinhotterstatesarelargerand
more
persistent.
The
findings
suggest
that
colder
regions
or
countries
may
benefit
from
climate
change
whilehotteronesmaybehurtwithoutsignificantadaptationefforts.Theseheterogeneouseffectspresentachallengefor
a
unified
effort
to
fight
climate
change
(whether
they
are
global
efforts
or
those
in
the
US).
Second,
this
paperdiscovers
more
severe
impacts
of
summer
temperature
in
the
US
in
recent
decades
(2000-2009
and
2010-2021)than
in
1990-1999.
A
one-degree
Fahrenheit
hotter
summer
in
the
2010s
reduces
employment
growth
in
thesummerandthefollowingfallbyabout0.1percentmorethan
itdidinthe1990s.Thisfindingimpliesadaptationefforts
in
the
US
have
not
taken
hold
or
significantly
altered
the
effects
of
temperature
shocks.
This
finding
hasimplications
for
other
countries.
Even
for
the
US,
which
is
a
developed
country
with
good
adaptation
capacityand
with
a
generally
mild
climate,
we
observe
negative
impacts
of
higher
temperature
in
the
summer.
For
poorer,hottercountries,theeffectsofrisingheat,withoutsignificantadaptationefforts,arelikelymuchmoresevere.The
paper
is
organized
as
follows.
Section
II
presents
a
simple
theoretical
framework
to
motivate
the
empiricalspecification.
Section
III
presents
data
and
the
main
empirical
specification.
Section
IV
presents
the
main
findingson
the
overall
impacts.
Section
V
presents
the
impact
by
the
US
state
and
patterns
between
the
impact
magnitudeand
a
state’s
climate.
Sections
VI
and
VII
examine
the
sectoral
impacts
of
a
hotter
summer
and
a
warmer
winter.SectionVIIIpresentstheeffectsbydecade.SectionIXpresentsrobustnesschecks.SectionXconcludes.II.
A
TheoreticalFrameworkThissectionpresentsatheoretical
motivationfortheempiricalsetup,wheretemperaturecanhavebothagrowtheffectandaleveleffectonemployment.InspiredbytheframeworkpresentedinDelletal.(2012),Iletemploymentinquarter
푞
afunctionofthecurrentquarter’sproductivityandlastquarter’semployment:IMFWORKINGPAPERSBeyondtheAnnualAverages:ImpactofSeasonalTemperatureonEmploymentGrowthinUSCounties휙
푇푠휆푠푞−1퐿
=
휃
푒푠푞퐴
퐿(1)푞푠푞where푞
denotesquarter,푠
denotestheseason(i.e.,summer,fall,winter,orspring).퐿
,
푇
and퐴
are푞푞푞employment,temperatureandproductivityinquarter
푞.퐿푞−1
isemploymentinthepreviousquarter.Employmentinaquartercanbedrivenbythecurrentquarter’sproductivityandemploymentinthepreviousquarter.Capitalisomittedforsimplicity.Employmentatquarter푞
candependonemploymentatquarter푞
−
1becausehiringmaytaketime.푒휙푠푇푞
denotestheleveleffectofthequarter’stemperatureonemployment.Employmentcanbeaffectedbythequarter’saveragetemperature.Apositive/negative/zero휙
impliesthathighertemperaturehasa푠positive/negative/zeroleveleffectonemployment.Notethattheparameters휃
,
휙
,
휌
,
휆
areseasonspecific.Thatis,theparametersaredifferentforwinter,푠푠푠푠spring,summer,andfall.Forexample,
highertemperaturemayhavedifferent(orevenopposite)leveleffectsinthesummerversusinthewinter,hence휙
shouldbedifferentto휙푤푖푛푡푒푟푠푢푚푚푒푟.Seasonalproductivitygrowthisasfollows:log(퐴
)
−
log(퐴
)
=
푔
+훿
푇
+휔
푇푠
푞−4(2)푞푞−4푠푠푞Equation(2)statesthatseasonalproductivitygrowth
dependsonthisquarter’stemperatureaswellasthetemperatureofthesameseasonlastyear(4quartersago).
훿
and휔
arealsoseasonspecific.
푇
,thisquarter’s푠푠푞temperature,couldhaveapositiveornegativeeffectonseasonalproductivitygrowth.
푇푞−4,temperatureofthesamequarterinthepreviousyear,
mayaffectthisquarter’sproductivitygrowthviatwochannels.Firstisthebaseeffect.Forexample,alower푇couldlower퐴푞−4
,whichboostslog(퐴
)
−
log(퐴푞−4)
duetothebase푞푞−4effect.Secondistheproductivitytransmissioneffect.Alower푇couldlower퐴푞−4
whichcouldinstead푞−4depressseasonalproductivitygrowthforthefollowingyear.Therefore,on
thenet,itisnotclearthat휔
is푠expectedtohaveapositiveornegativevalue.Equations(1)and(2)statethattemperature
couldhavealeveleffectonemployment(via푒휙
푇
).Itcouldalso푠푞haveagrowth
effectonemploymentviaseasonalproductivitygrowthspecifiedinequation(2).3Now,let’srearrangeequations(1)and(2)toderiveanempiricalspecification.Foreaseofexposition,let’sstartequation(1)forthesummer휆푠푢푚푚푒푟푒휙푠푢푚푚푒푟푇푞퐴푞푠푢푚푚푒푟퐿푞−1(3)퐿
=
휃푞푠푢푚푚푒푟휆푠푝푟푖푛푔푞−2andsubstitute퐿푞−1
=
휃푠푝푟푖푛푔
푒휙푠푝푟푖푛푔푇푞−1퐴
푠푝푟푖푛푔퐿(notethatsince푞
isthesummer,푞
−
1
isthespring).푞−1휆푠푢푚푚푒푟휆푠푝푟푖푛푔(3)becomes퐿푞
=
휃푠푢푚푚푒푟푒휙푠푢푚푚푒푟푇
퐴훽푠푢푚푚푒푟
(휃푠푝푟푖푛푔푒휙푠푝푟푖푛푔푇푞−1퐴푠푝푟푖푛푔퐿푞−2)(4)푞푞푞−13
Althoughhumankind’sgreen-housegasemissionsinfluenceglobaltemperature,localtemperatureisconsideredexogenoustolocaleconomicactivities.IMFWORKINGPAPERSBeyondtheAnnualAverages:ImpactofSeasonalTemperatureonEmploymentGrowthinUSCountiesKeepsubstituting퐿푞−2
=
휃푤푖푛푡푒푟푒휙푤푖푛푡푒푟푇푞−2퐴푤푖푛푡푒푟푞−2퐿휆푤푖푛푡푒푟푞−3and퐿푞−3
=
휃
푒휙푓푎푙푙푓푎푙푙푇퐴퐿푓푎푙푙
휆푓푎푙푙푞−3
푞−4into(4),푞−3wecanseethat(1)takesthefollowinggeneralform:휙
푇
휙
푇휙
푇휙
푇푞−3
퐴푞0퐴123휇퐿
=
휃푒푞0푞푒1푞−1푒2푞−2푒3퐴퐴퐿(5)푞−1
푞−2
푞−3
푞−4(5)statesthatemploymentisafunctionoftemperatureandproductivityofthis
quarteraswellasthoseinthepreviousthreequartersandemploymentofquarter
푞
−
4.Notethatallparametersof(5)areseasonspecific.Similar,forthesameseasoninthepreviousyear(i.e.,
푞
−
4):휙
푇휙
푇휙
푇휙
푇0123휇퐿푞−4
=
휃푒0푞−4푒1푞−5푒2푞−6푒3푞−7퐴퐴퐴퐴퐿(6)푞−4
푞−5
푞−6
푞−7
푞−8Subtractlogof(5)bylogof(6):33Δlog(퐿
)
=
∑
휙
Δ푇
+∑
휎
Δlog(퐴푞−휏)+휇Δ
log(퐿푞−4)
(7)푞휏푞−휏휏휏=0휏=0whereΔlog(퐿
)
=
log(퐿
)
−
log(퐿푞−4)
isyear-over-yeargrowthinemployment;
Δ푇
=
푇
−
푇indicates푞−휏−4푞푞푞−휏푞−휏year-over-yearchangeintemperature;andΔlog(퐴푞−휏)
=
log(퐿푞−휏)
−
log(퐿푞−휏−4)
indicatesyear-over-yeargrowthinseasonalproductivity.Substituting(2)into(7)yields:33Δlog(퐿
)
=
∑
휙
Δ푇
+∑
휎
{푔
+훿
푇
+휔
푇푞−휏−4}+휇Δ
log(퐿푞−4)
(8)푞휏푞−휏휏휏휏푞−휏휏휏=0휏=0Rearrangetermsin(8)yields:37Δlog(퐿
)
=
푔
+∑
훽
푇
+∑
휋
푇
+휇Δ
log(퐿푞−4)
(9)푞휏푞−휏휏
푞−휏휏=0휏=4where푔
=
∑3
휎
푔
;훽
=
휙
+휎
훿
;휋
=
−휙
+휎
휔
.Asbefore,allparametersareseasonspecific(thatis,휏=0휏휏휏휏휏휏휏휏휏휏theyvarydependingonwhetherthequarter푞
issummer,fall,winter,orspring).Iaminterestedinthecoefficients훽
,
훽
,
훽
,
훽
,representingtheeffectsoftemperatureinthisquarterand
three0123quartersagoonthisquarter’semployment.Intheempiricalsection,Iwillestimate훽
,
훽
,
훽
,
훽
foreach0123season.
푇
to푇andΔ
log(퐿푞−4)
areconsideredcontrolvariables.4푞−7푞−44
Asdiscussed,temperaturebetween푞
−
4
and푞
−
7
hasbaseeffectsaswellaspotentialproductivitytransmissioneffects.IMFWORKINGPAPERSBeyondtheAnnualAverages:ImpactofSeasonalTemperatureonEmploymentGrowthinUSCountiesIII.
DataandEmpiricalSpecificationDataEmploymentdata:Quarterlyemploymentdatabetween1990and2021attheUScountylevelarefromtheUSCensus’sQuarterlyCensusofEmploymentandWages(QCEW).
TheQuarterlyCensusofEmploymentandWages(QCEW)programpublishesaquarterlycountof
(formal)employmentandwagesreportedbyemployerscoveringmorethan95percentofUS
jobs,availableatthecounty,metropolitan(MSA),state,andnationallevelsbyindustry.
Majorexclusionsfromthedatasetincludeself-employedworkers,mostagriculturalworkersonsmallfarms,allmembersoftheArmedForces,electedoffi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 遂宁职业学院《设计心理学》2023-2024学年第二学期期末试卷
- 河北交通职业技术学院《铁路运输设备》2023-2024学年第二学期期末试卷
- 山西信息职业技术学院《统计建模与数据分析》2023-2024学年第二学期期末试卷
- 四川邮电职业技术学院《软件工程课程设计》2023-2024学年第二学期期末试卷
- 人教版八下历史与社会 5.1.1明清帝国的兴替 教学设计
- 常州大学怀德学院《外科学总论B》2023-2024学年第二学期期末试卷
- 收购白酒合同范本
- 公路改建工程质量监理程序实施细则
- 2025年度体育公园场地租赁合同样本
- 橱柜衣柜增补合同范本
- 2023年新高考(新课标)全国2卷数学试题真题(含答案解析)
- 幼儿园中班艺术课《台布的设计》课件
- 宫颈疾病诊疗流程
- HYT 0314-2021 海水入侵监测与评价技术规程
- 油漆使用登记记录表
- 农田杂草的调查
- 【知识点提纲】新教材-人教版高中化学必修第一册全册各章节知识点考点重点难点提炼汇总
- 上海小弄堂-电子小报
- 轨道交通安全专题培训
- 物理化学完整版答案
- 节流孔板孔径计算
评论
0/150
提交评论