版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第=page11页,共=sectionpages11页2022-2023学年黑龙江省绥化市绥棱县八年级(下)期末数学试卷(五四学制)一、选择题(本大题共10小题,共30.0分。在每小题列出的选项中,选出符合题目的一项)1.下列二次根式中,是最简次根式的是(
)A.8 B.a2 C.2.下列四边形中,对称轴条数最多的是(
)A.矩形 B.菱形 C.正方形 D.等腰梯形3.矩形具有而菱形不具有的性质是(
)A.两组对边分别平行 B.对角线相等 C.对角线互相平分 D.两组对角分别相等4.下列计算正确的是(
)A.3−1=2 B.25.三角形的三边长分别为3,4,5,则最长边上的高为(
)A.6 B.12 C.2.4 D.4.86.点(2,m),(−1,nA.1 B.−1 C.2 D.7.一次函数y=3x−A.第一象限 B.第二象限 C.第三象限 D.第四象限8.若函数y=x+k2−A.−1 B.0 C.2 D.9.等腰三角形一个角为30°,其它两个角的度数是(
)A.75°,75°或30°,120° B.30°,75°或30°,45°
C.30°,65°或30°10.如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:
①△DFEA.1个 B.2个 C.3个 D.4个二、填空题(本大题共10小题,共30.0分)11.如果二次根式3x+1有意义,那么x的取值范围是12.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=
13.把函数y=2x的图象向下平移3个单位长度,得到的函数图象的解析式为
14.等边三角形边长为10,则一边上的高长是______.15.一组数据−2,1,2,3,x,4,若4是这组数据的众数,则这组数据的平均数是______.16.若x,y为实数,且满足|x−1|+y17.一组数据:23,24,25,26,27的方差是______.18.在△ABC中,AB=15,AC=1319.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB
20.如图图形都是由图积为1的正方形按一定的规律组成的,其中,第1个图形中面积为1的正方形有9个,第2个图形中面积为1的正方形有14个,……,按此规律,则第10个图形中面积为1的正方形的个数为______.三、解答题(本大题共8小题,共60.0分。解答应写出文字说明,证明过程或演算步骤)21.(本小题6.0分)
计算:
(1)5+22.(本小题6.0分)
某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况统计如图所示.
(1)本次共抽查学生______人,并将条形图补充完整;
(2)捐款金额的众数是______,平均数是______;
(3)在八年级600名学生中,捐款20元及以上(含2023.(本小题6.0分)
如图在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度.
(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标______;
(2)线段24.(本小题7.0分)
如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE//BD,25.(本小题8.0分)
在进行二次根式的化简与运算时,如遇到35,23,23+1这样的式子,还需做进一步的化简,这种方法叫分母有理化.
35=3×55×5=26.(本小题8.0分)
一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),如图中的折线表示y与x之间的函数关系.
(1)甲、乙两地之间的距离为______km27.(本小题9.0分)
某工厂现有甲种原料360千克,乙种原料290千克,计划用这两种原料全部生产A、B两种产品共50件,生产A、B两种产品与所需原料情况如下表所示:原料
型号
甲种原料(千克)
乙种原料(千克)
A产品(每件)
9
3
B产品(每件)
4
10(1)该工厂生产A、B两种产品有哪几种方案?
(2)若生成一件A产品可获利80元,生产一件B28.(本小题10.0分)
如图①,已知直线y=−2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.
(1)求点A、C的坐标;
(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);答案和解析1.【答案】D
【解析】解:A、8=22,故A不符合题意;
B、a2=|a|,故B不符合题意;
C、45=35,故C不符合题意;2.【答案】C
【解析】解:A、矩形是两条对称轴;
B、菱形是两条对称轴;
C、正方形是四条对称轴;
D、等腰梯形是一条对称轴.
所以对称轴条数最多的是正方形.
故选:C.
根据轴对称图形的概念及对称轴的概念进行分析解答即可,矩形有两条对称轴,为对边中垂线所在的直线;菱形由两条对称轴,为其两条对角线所在的直线;正方形有四条对称轴,为其两条对角线所在的直线,还有其对边中垂线所在的直线;等腰梯形有一条对称轴,为其两底的中垂线所在的直线.
本题主要考查轴对称图形概念,对称轴的性质,关键在于相关的概念正确的分析出题目中图形的对称轴,认真的比较.
3.【答案】B
【解析】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;
B、矩形的对角线相等,菱形的对角线不一定相等,故本选项正确;
C、矩形与菱形的对角线都互相平分,故本选项错误;
D、矩形与菱形的两组对角都分别相等,故本选项错误.
故选B.
根据矩形与菱形的性质对各选项分析判断后利用排除法求解.
本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.
4.【答案】C
【解析】解:A、3和1不能合并,此选项计算错误,不符合题意;
B、(2)2=2,此选项计算错误,不符合题意;
C、2×5=2×5.【答案】C
【解析】解:如图所示,过点C作CD⊥AB交AB于点D,
∵三角形三边长分别是3,4,5,
∴设AC=3,BC=4,AB=5,
∵AC2+BC2=32+42=25,AB26.【答案】A
【解析】解:∵点(2,m),(−1,n)在一次函数y=−x+1的图象上,
∴m=−2+1=−17.【答案】B
【解析】解:∵一次函数y=3x−2中,k=3>0,b=−2<8.【答案】D
【解析】解:∵y=x+k2−1,
∴k2−1=0,
解得:k=±9.【答案】A
【解析】解:(1)当30°的内角为这个等腰三角形的顶角,
则另外两个内角均为底角,它们的度数为180°−30°2=75°,
∴其它两个角的度数是75°,75°;
(2)当30°的内角为这个等腰三角形的底角,
则另两个内角一个为底角,一个为顶角,
底角为30°,顶角为180°−30°−30°=120°,
∴其它两个角的度数是10.【答案】B
【解析】解:①连接CD;
∵△ABC是等腰直角三角形,
∴∠DCB=∠A=45°,CD=AD=DB;
∵AE=CF,
∴△ADE≌△CDF(SAS);
∴ED=DF,∠CDF=∠EDA;
∵∠ADE+∠EDC=90°,
∴∠EDC+∠CDF=∠EDF=90°,
∴△DFE是等腰直角三角形.(故①正确);
②当E、F分别为AC、BC中点时,四边形CEDF是正方形(故②错误);
③如图2所示,分别过点D,作DM⊥AC,DN⊥BC,于点M,N,
可以利用割补法可知四边形CEDF的面积等于正方形CMDN面积,故面积保持不变(故③错误);
④△DEF是等腰直角三角形,2D11.【答案】x≥【解析】解:∵二次根式3x+1有意义,
∴3x+1≥0,
解得:x12.【答案】6c【解析】解:∵四边形ABCD是平行四边形,
∴OA=OC;
又∵点E是BC的中点,
∴BE=CE,
∴AB=2OE=2×3=613.【答案】y=【解析】解:直线y=2x向下平移3个单位所得的直线解析式为:y=2x−3.
14.【答案】5【解析】解:如图,过点A作AD⊥BC于点D,
根据题意,得AB=BC=AC=10,∠BAC=60°,
∴∠BAD=12∠B15.【答案】2
【解析】解:∵4是一组数据−2,1,2,3,x,4的众数,
∴x=4,
∴平均数为:−2+1+2+316.【答案】−3【解析】解:∵|x−1|+y+3=0,
∴x−1=0,y+3=0,
解得x=117.【答案】2
【解析】解:平均数为15(23+24+25+26+27)=2518.【答案】42或32
【解析】解:此题应分两种情况说明:
(1)当△ABC为锐角三角形时,在Rt△ABD中,
BD=AB2−AD2=152−122=9,
在Rt△ACD中,
CD=AC2−AD2=132−122=5
∴BC=5+9=14
∴△ABC的周长为:15+13+14=42;19.【答案】75°【解析】解:如图,连接BD,
∵四边形ABCD为菱形,∠A=60°,
∴△ABD为等边三角形,∠ADC=120°,∠C=60°,
∵P为AB的中点,
∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,
∴∠PDC=90°,20.【答案】54
【解析】解:第1个图形面积为1的小正方形有9个,
第2个图形面积为1的小正方形有9+5=14个,
第3个图形面积为1的小正方形有9+5×2=19个,
…,
第n个图形面积为1的小正方形有9+5×(n−1)=(5n+4)个,
所以第10个图形中面积为1的小正方形的个数为5×10+4=54个.
故答案为:54.21.【答案】解:(1)5+45−8+2
=【解析】(1)先把二次根式化简,合并同类二次根式即可得到结果;
(2)22.【答案】解:(1)50,补全条形统计图图形如下:
(2)10;13.1;
(3)捐款20元及以上(含20元)的学生有:7+450×600=132(人【解析】【分析】
本题主要考查了条形统计图,扇形统计图,平均数和众数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;
(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将50人的捐款总额除以总人数可得平均数;
(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.
【解答】
解:(1)本次抽查的学生有:14÷28%=50(人),
则捐款10元的有50−9−14−7−4=16(人)23.【答案】(−2,【解析】解:(1)菱形ABCD如图所示,
其中点D的坐标为(−2,1);
故答案为:(−2,1);
(2)BC=24.【答案】(1)证明:∵四边形ABCD是平行四边形,
∴AB//DC,AB=CD,
∵AE//BD,
∴四边形ABDE是平行四边形;
(2)解:由(1)【解析】(1)根据平行四边形的判定定理即可得到结论;
(2)由(1)知,AB=DE=CD,即D是CE的中点,在直角△25.【答案】解:25+3
=5−35+【解析】仿照题意进行分母有理化即可.
本题主要考查了分母有理化,正确理解题意是解题的关键.
26.【答案】900
慢车行驶4h时,两车之间的距离为0km【解析】解:(1)根据题意,得甲、乙两地之间的距离为900km,
故答案为:900;
(2)图中点B的实际意义为:慢车行驶4h时,两车之间的距离为0km(两车相遇),
故答案为:慢车行驶4h时,两车之间的距离为0k27.【答案】解:(1)设工厂可安排生产x件A产品,则生产(50−x)件B产品
由题意得:
3x+10(50−x)≤2909x+4(50−x)≤360,
解得:30≤x≤32的整数.
∴有三种生产方案:①A30件,B20件;②A31件,B19件;③A32件,B18件;
(2)方法一:方案(一)A,30件,B,20件时,
20×120+30×80=【解析】(1)设工厂可安排生产x件A产品,则生产(50−x)件B产品,根据不能多于原料的做为不等量关系可列不等式组求解;
(2)可以分别求出三种方案比较即可.
本题考查理解题意
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国人民大学《信息管理专业研究方法论与创新教育》2023-2024学年第一学期期末试卷
- 郑州软件职业技术学院《体育产品概论》2023-2024学年第一学期期末试卷
- 小学2024年体育自评结果
- 浙江电力职业技术学院《生产运作实验》2023-2024学年第一学期期末试卷
- 长安大学兴华学院《瑜伽基础》2023-2024学年第一学期期末试卷
- 餐饮文化与创新模板
- 双十一医保新品发布
- 专业基础-房地产经纪人《专业基础》模拟试卷5
- 三年级学习导向模板
- 气候变迁与寒露模板
- 绿色制造与可持续发展技术
- 污水处理厂单位、分部、分项工程划分
- 春节值班安全教育培训
- 舌咽神经痛演示课件
- 子宫内膜癌业务查房课件
- 社会学概论课件
- 华为经营管理-华为的研发管理(6版)
- C及C++程序设计课件
- 公路路基路面现场测试随机选点记录
- 国家自然科学基金(NSFC)申请书样本
- 湖南省省级温室气体排放清单土地利用变化和林业部分
评论
0/150
提交评论