![重点掌握两角和差的余弦公式正弦公式难点角的变换课件_第1页](http://file4.renrendoc.com/view/017be78b1e9dbeaf1204a432a23b9083/017be78b1e9dbeaf1204a432a23b90831.gif)
![重点掌握两角和差的余弦公式正弦公式难点角的变换课件_第2页](http://file4.renrendoc.com/view/017be78b1e9dbeaf1204a432a23b9083/017be78b1e9dbeaf1204a432a23b90832.gif)
![重点掌握两角和差的余弦公式正弦公式难点角的变换课件_第3页](http://file4.renrendoc.com/view/017be78b1e9dbeaf1204a432a23b9083/017be78b1e9dbeaf1204a432a23b90833.gif)
![重点掌握两角和差的余弦公式正弦公式难点角的变换课件_第4页](http://file4.renrendoc.com/view/017be78b1e9dbeaf1204a432a23b9083/017be78b1e9dbeaf1204a432a23b90834.gif)
![重点掌握两角和差的余弦公式正弦公式难点角的变换课件_第5页](http://file4.renrendoc.com/view/017be78b1e9dbeaf1204a432a23b9083/017be78b1e9dbeaf1204a432a23b90835.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点:掌握两角和差的余弦公式、正弦公式.难点:①角的变换与角的范围讨论.②公式的适当选取.重点:掌握两角和差的余弦公式、正弦公式.重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件2.在理解基础上记忆公式要注意各公式之间结构形式上的异同点,以正确区分公式.和角余弦同名积之差,差角余弦同名积之和;和角正弦异名积之和,差角正弦异名积之差.3.灵活运用公式,会正用、逆用、变形运用,会依据题目中角的构成特点,函数名的构成及式子的结构特征恰当选择应用公式,并不断归纳、积累经验形成技巧.2.在理解基础上记忆公式重点掌握两角和差的余弦公式正弦公式难点角的变换课件[分析]式子为同名积之差,故用Cα+β.重点掌握两角和差的余弦公式正弦公式难点角的变换课件[点评]应用公式前一定要看角是否相同,看名称及式子结构特征是否与公式吻合.[点评]应用公式前一定要看角是否相同,看名称及式子结构特征在△ABC中,若sinA·sinB<cosA·cosB,则△ABC一定是 ()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形重点掌握两角和差的余弦公式正弦公式难点角的变换课件[答案]D[答案]D[例2](1)cos44°sin14°-sin44°cos14°;(2)sin(54°-x)cos(36°+x)+cos(54°-x)sin(36°+x).[分析](1)符合S(α-β),(2)符合S(α+β)的结构特征,可直接运用S(α±β)公式.重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件[分析]△ABC中,C=π-(A+B);已知cosA,sinB可求sinA,cosB.由sinB求cosB时,因为B可能为钝角,故应讨论确定cosB的符号.重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件在△ABC中,sinAcosB=1-cosAsinB,则△ABC的形状为________.[答案]
直角三角形[解析]
由题意得sinAcosB+cosAsinB=1,即sin(A+B)=1.重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件[点评]讨论角的范围时,α-β一般看作α+(-β),先求出-β的范围,再求α+(-β)的范围,可有效避免出错.[点评]讨论角的范围时,α-β一般看作α+(-β),先求出重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件重点掌握两角和差的余弦公式正弦公式难点角的变换课件一、选择题1.在△ABC中,已知sin(A-B)·cosB+cos(A-B)sinB≥1,则△ABC是 ()A.锐角三角形 B.钝角三角形C.直角三角形 D.等腰非直角三角形[答案]C一、选择题[答案]
C重点掌握两角和差的余弦公式正弦公式难点角的变换课件二、填空题3.化简:cos(35°-x)cos(25°+x)-sin(35°-x)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《大学物理(下册)》课件-第16章
- 融资融券业务操作方法及技巧介绍
- 2025年全球及中国自主机器人街道吸尘器行业头部企业市场占有率及排名调研报告
- 2025年全球及中国商店可视化工具行业头部企业市场占有率及排名调研报告
- 2025年全球及中国数通硅光芯片行业头部企业市场占有率及排名调研报告
- 2025年全球及中国固体葡萄糖浆行业头部企业市场占有率及排名调研报告
- 2025年全球及中国房屋装修和翻新行业头部企业市场占有率及排名调研报告
- 2025年全球及中国立式高温反应釜行业头部企业市场占有率及排名调研报告
- 2025年全球及中国输注穿刺耗材行业头部企业市场占有率及排名调研报告
- 2025年全球及中国微波波导衰减器行业头部企业市场占有率及排名调研报告
- 《中国心力衰竭诊断和治疗指南(2024)》解读完整版
- 《档案管理课件》课件
- 2024年度中国共产主义共青团团课课件版
- 2025年中考物理终极押题猜想(新疆卷)(全解全析)
- 胫骨骨折的护理查房
- 抽水蓄能电站项目建设管理方案
- 电动工具培训课件
- 《智能网联汽车智能传感器测试与装调》电子教案
- 视频会议室改造方案
- 【中考真题】广东省2024年中考语文真题试卷
- GB/T 32399-2024信息技术云计算参考架构
评论
0/150
提交评论