浙江省金华市横店中学2022年高二数学理联考试题含解析_第1页
浙江省金华市横店中学2022年高二数学理联考试题含解析_第2页
浙江省金华市横店中学2022年高二数学理联考试题含解析_第3页
浙江省金华市横店中学2022年高二数学理联考试题含解析_第4页
浙江省金华市横店中学2022年高二数学理联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省金华市横店中学2022年高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.圆C1:x2+y2=a2与圆C2:(x﹣b)2+(y﹣c)2=a2相切,则等于()A.1 B.2 C.4 D.16参考答案:C【考点】圆与圆的位置关系及其判定.【专题】计算题;转化思想;直线与圆.【分析】利用圆心距等于半径和,得到关系式,即可求出表达式的值.【解答】解:圆C1:x2+y2=a2与圆C2:(x﹣b)2+(y﹣c)2=a2相切,可得:,即b2+c2=4a2,∴=4.故选:C.【点评】本题考查圆与圆的位置关系的应用,考查计算能力.2.下列求导数运算正确的是()参考答案:B略3.已知双曲线的右焦点为F,O为坐标原点,以F为圆心、OF为半径的圆与x轴交于O,A两点,与双曲线C的一条渐近线交于点B,若,则双曲线C的渐近线方程为(

)A. B. C. D.参考答案:B【分析】取的中点,利用点到直线距离公式可求得,根据可得,从而可求得渐近线方程.【详解】如图,取的中点,则为点到渐近线的距离则又为的中点

,即:故渐近线方程为:本题正确选项:B4.观察下列关于变量x和y的三个散点图,它们从左到右的对应关系依次是()A.正相关、负相关、不相关 B.负相关、不相关、正相关C.负相关、正相关、不相关 D.正相关、不相关、负相关参考答案:D【考点】BI:散点图.【分析】根据散点图的点的分布即可得到结论.【解答】解:第一个图点的分布比较集中,且y随x的增加,而增加,是正相关.第二个图点的分布比较分散,不相关.第三个图点的分布比较集中,且y随x的增加,而减少,是负相关.故选:D5.椭圆=1与双曲线=1有相同的焦点,则实数a的值是()A. B.1或﹣2 C.1或 D.1参考答案:D【考点】双曲线的简单性质;椭圆的简单性质.【分析】由题意可知焦点在x轴上,且a>0,c相等.【解答】解:∵椭圆=1与双曲线=1有相同的焦点,∴它们的焦点在x轴上,且6﹣a2=a+4(a>0),解得a=1,故选D.【点评】本题考查了圆锥曲线的定义,属于基础题.6.函数的导函数为(A)

(B)

(C)

(D)参考答案:D略7.已知Sn为等差数列{an}的前n项,若a2:a4=7:6,则S7:S3等于()A.2:1 B.6:7 C.49:18 D.9:13参考答案:A【考点】等差数列的前n项和.【分析】根据所给的两项之比和要求的数列的前n项和,把前n项和写成S7:S3=7a4:3a2,代入比值求出结果.【解答】解:∵Sn为等差数列{an}的前n项,若a2:a4=7:6,∴S7:S3=7a4:3a2=7×6:3×7=2:1故选A.8.下列命题中的真命题是()A.是有理数 B.是实数 C.e是有理数 D.{x|x是小数}?R参考答案:B【考点】命题的真假判断与应用.【分析】首先判断出是无理数,是实数,e是无理数,{x|x是小数}为实数,然后结合选择项逐一判断命题的真假.【解答】解:A.因为是无理数,所以A为假命题.B.因为属于无理数指数幂,结果是个实数,所以B为真命题.C.因为e是无理数,所以C为假命题.D.因为{x|x是小数}=R,所以D为假命题.故选B.9.对于在区间上有意义的两个函数和,如果对于任意均有成立,则称函数与在区间上是接近的。若与在区间上是接近的,则实数的取值范围是(

)A.

B.

C.

D.参考答案:A略10.已知平面α∥平面β,它们的距离是d,直线aìα,则在平面β内与直线a平行且相距为2d的直线有(

)(A)0条

(B)1条

(C)2条

(D)无数多条参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.设函数,观察:根据以上事实,由归纳推理可得:当且时,

.参考答案:12.已知命题与命题都是真命题,则实数的取值范围是

.参考答案:13.在长方体中,,,点,分别为,的中点,点在棱上,若平面,则四棱锥的外接球的体积为

.参考答案:

14.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为____;参考答案:【分析】由对六艺“礼、乐、射、御、书、数”进行全排列,基本事件的总数,再分类求得满足“数”必须排在前两节,“礼”和“乐”必须分开安排包含的基本事件个数,利用古典概型及其概率的计算公式,即可求解。【详解】由题意,对六艺“礼、乐、射、御、书、数”进行全排列,基本事件的总数为种,满足“数”必须排在前两节,“礼”和“乐”必须分开安排包含的基本事件个数:当第一节是“数”,共有种不同的排法;当第二节是“数”,共有种不同的排法,所以满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为。【点睛】本题主要考查了排列、组合的综合应用,以及古典概型及其概率的计算问题,其中解答中合理分类求解满足“数”必须排在前两节,“礼”和“乐”必须分开安排基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题。15.若函数,则=

参考答案:16.如图,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一个点Q满足PQ⊥DQ,则a的值等于。参考答案:217.已知直线,平面,并给出以下命题:①

若a,b∥,则a∥b;②若a,b,且∥;则a∥b;③若a∥,b∥,则a∥b;

④若,,则;其中正确的命题有

.参考答案:④略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,R.(1)证明:当时,函数是减函数;(2)根据a的不同取值,讨论函数的奇偶性,并说明理由;参考答案:(1)见解析;(2)为既奇又偶函数,为奇函数,为非奇非偶函数。【分析】(1)由定义法证明函数是减函数;(2)对,,三种情况进行讨论,从而得到奇偶性。【详解】(1)证明:任取,假设则因为,所以,又,所以所以,即所以当时,函数是减函数(2)当时,,,所以函数是偶函数当时,,所以函数奇函数当时,且所以函数为非奇非偶函数。【点睛】本题考查函数的单调性证明以及奇偶性,是函数的两个重要性质,属于一般题。19.已知(n∈N*)的展开式中第五项的系数与第三项的系数的比是10:1.(1)求展开式中各项系数的和;

(2)求展开式中含的项.参考答案:略20.已知函数,(1)若,,判断在(-∞,1)上的单调性,并用定义证明;(2)已知,存在,对任意,都有成立,求a的取值范围.参考答案:(1)减函数,证明见解析;(2)【分析】(1)先求得的解析式,然后判断函数在递减,并利用单调性的定义,证明结论成立.(2)将原不等式等价转化为存在,使得,求得的取值范围,首先证得恒成立,然后对分成和两种情况分类讨论,结合求得的取值范围.【详解】(1),且,,在上为减函数证明:任取、,且,,即在上为减函数.(2),对任意,存在,使得成立,即存,使得,当,为增函数或常函数,此时,则有恒成立当时,,当时,,..故实数的取值范围是.【点睛】本小题主要考查利用单调性的定义证明函数的单调性,考查存在性问题和恒成立问题组合而成的不等式的求解策略,考查分类讨论的数学思想方法,综合性很强,属于难题.21.(本小题满分12分)用数学归纳法证明,参考答案:证明:

当时,左边,右边,即原式成立

假设当时,原式成立,即

当时,

即原式成立,略22

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论