版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市墨水湖中学高二数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2 C.﹣1 D.﹣2参考答案:B【考点】导数的几何意义.【分析】切点在切线上也在曲线上得到切点坐标满足两方程;又曲线切点处的导数值是切线斜率得第三个方程.【解答】解:设切点P(x0,y0),则y0=x0+1,y0=ln(x0+a),又∵∴x0+a=1∴y0=0,x0=﹣1∴a=2.故选项为B2.过椭圆的左顶点A的斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若则椭圆离心率的取值范围是(
)
A. B. C. D.参考答案:C略3.在圆x+y=5x内过点(,)有n条弦的长度成等差数列,最短弦长为数列首项a,最长弦长为a,若公差d,那么n的取值集合为(
)A
B
C
D参考答案:A
错因:学生对圆内过点的弦何时最长、最短不清楚,不能借助d的范围来求n4.已知函数,且,则
A.
B.
C.
D.参考答案:A5.用“辗转相除法”求得和的最大公约数是(
)A.
B.
C.
D.
参考答案:D6.若为实数,则“”是“”的(
)(A)充分而不必要条件
(B)必要而不充分条件
(C)充分必要条件
(D)既不充分也不必要条件参考答案:D7.直线的夹角是
(
)A.
B.C.D.参考答案:B8.某公司为确定明年投入某产品的广告支出,对近5年的广告支出m与销售额y(单位:百万元)进行了初步统计,得到下列表格中的数据:y3040p5070m24568经测算,年广告支出m与年销售额y满足线性回归方程=6.5m+17.5,则p的值为()A.45 B.50 C.55 D.60参考答案:D【考点】线性回归方程.【专题】函数思想;综合法;概率与统计.【分析】求出,代入回归方程计算,从而得出p的值.【解答】解:==5,∴=6.5×5+17.5=50,∴=50,解得p=60.故选:D.【点评】本题考查了线性回归方程经过样本中心的性质,属于基础题.9.下列命题中:①平行于同一直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一直线的两直线平行;④垂直于同一平面的两直线平行.其中正确的个数有
(
)A、1
B、2
C、3
D、4
参考答案:B略10.对两条不相交的空间直线a与b,必存在平面α,使得(
)A.a?α,b?α
B.a?α,b∥αC.a⊥α,b⊥α
D.a?α,b⊥α参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.抛物线上一点到点与焦点的距离之和最小,则点的坐标为______。参考答案:(1,2)
略12.直棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成的角的余弦值为.参考答案:【考点】异面直线及其所成的角.【专题】空间角.【分析】画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.【解答】解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC的中点为O,连结ON,MN,OB,∴MNOB,∴MN0B是平行四边形,∴BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB==,在△ANO中,由余弦定理得:cos∠ANO===.故答案为:.【点评】本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.13.已知样本7,5,x,3,4的平均数是5,则此样本的方差为.参考答案:2【考点】极差、方差与标准差.【专题】概率与统计.【分析】运用平均数的公式:解出x的值,再代入方差的公式中计算得出方差.【解答】解:∵样本7,5,x,3,4的平均数是5,∴7+5+x+3+4=5×5=25;解得x=6,方差s2=[(7﹣5)2+(5﹣5)2+(6﹣5)2+(3﹣5)2+(4﹣5)2]=(4+1+4+1)=.故答案为:2.【点评】本题考查的是平均数和方差的求法.要求熟练掌握平均数和方差的计算公式,比较基础.14.已知直线与垂直,则的值是
.参考答案:1或4略15.已知sinα=,则cosα=
;tanα=
.参考答案:,考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:由sinα的值及α的范围,利用同角三角函数间的基本关系求出cosα的值,进而求出tanα的值.解答: 解:∵sinα=,α∈(0,),∴cosα==;tanα==.故答案为:;点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.16.直线被圆截得的弦长为
参考答案:略17.若数列的通项公式,记,试通过计算的值,推测出
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数,x∈R,且.(Ⅰ)求A的值;(Ⅱ)设α,β∈[0,],=﹣,,求cos(α+β)的值.参考答案:【考点】两角和与差的余弦函数.【分析】(Ⅰ)由代入计算,利用特殊角的三角函数值即可计算得解.(Ⅱ)由=﹣,利用诱导公式可求sinα=,又α∈[0,],利用同角三角函数基本关系式可求cosα,由=,得,结合范围β∈[0,],利用同角三角函数基本关系式可求,利用两角和的余弦函数公式即可计算得解.【解答】(本小题满分12分)解:(Ⅰ)因为,所以A=2.…(4分)(Ⅱ)由=2cos(α++)=2cos(α+)=﹣2sinα=﹣,得sinα=,又α∈[0,],所以cosα=.…(8分)由=2cos(β﹣+)=2cosβ=,得,又β∈[0,],所以.…(10分)所以cos(α+β)=cosαcosβ﹣sinαsinβ=×﹣×=﹣.…(12分)【点评】本题主要考查了特殊角的三角函数值,诱导公式,同角三角函数基本关系式,两角和的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.19.已知以点为圆心的圆与直线相切,过点的动直线与圆A相交于M、N两点(1)求圆A的方程.
(2)当时,求直线方程.参考答案:由题意知到直线的距离为圆半径
(5分)
②由垂径定理可知且,在中由勾股定理易知
设动直线方程为:,显然合题意。
由到距离为1知
为所求方程. (7分)略20.在平面直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴的非负半轴为极轴且取相同的单位长度建立极坐标系,圆C1的极坐标方程为.(1)求直线l的普通方程与圆C1的直角坐标方程;(2)设动点A在圆C1上,动线段OA的中点P的轨迹为C2,C2与直线l交点为M、N,且直角坐标系中,M点的横坐标大于N点的横坐标,求点M、N的直角坐标.参考答案:(1)的直角坐标方程是.直线的普通方程为.(2).【分析】(1)消去参数后可得的普通方程,把化成,利用互化公式可得的直角方程.(2)设点,则,利用在椭圆上可得的直角方程,联立直线的普通方程和的直角坐标方程可得的直角坐标.【详解】解:(1)由,得,将互化公式代上式,得,故圆的直角坐标方程是.由,得,即.所以直线的普通方程为.(2)设点.由中点坐标公式得曲线的直角坐标方程为.联立,解得,或.故点的直角坐标是.【点睛】极坐标转化为直角坐标,关键是,而直角坐标转化为极坐标,关键是.参数方程化为直角方法,关键是消去参数,消参的方法有反解消参、平方消参、交轨法等.21.在长方体中,已知,
(1)求证://面ACE
(2)求异面直线与所成角的余弦值.参考答案: 略22.(2012?辽宁)在△ABC中,角A、B、C的对边分别为a,b,c.角A,B,C成等差数列.(Ⅰ)求cosB的值;(Ⅱ)边a,b,c成等比数列,求sinAsinC的值.参考答案:;解:(Ⅰ)由2B=A+C,A+B+C=180°,解得B=60°,∴cosB=;…6分(Ⅱ)(解法一)由已知b2=ac,根据正弦定理得sin2B=sinAsinC,又cosB=,∴sinAsinC=1﹣cos2B=…12分(解法二)由已知b2=ac及cosB=,根据余弦定理cosB=解得a=c,∴B=A=C=60°,∴sinAsinC=…12分考点;数列与三角函数的综合.专题;计算题;综合题.分析;(Ⅰ)在△ABC中,由角A,B,C成等差数列可知B=60°,从而可得cosB的值;(Ⅱ)(解法一),由b2=ac,cosB=,结合正弦定理可求得sinAsinC的值;(解法二),由b2=ac,cosB=,根据余弦定理cosB=可求得a=c,从而可得△ABC为等边三角形,从而可求得sinAsinC的值.解答;解:(Ⅰ)由2B=A+C,A+B+C=18
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国固定气泡探测器行业头部企业市场占有率及排名调研报告
- 2025-2030全球氦气回收设备行业调研及趋势分析报告
- 2025-2030全球财务规划App行业调研及趋势分析报告
- 2025-2030全球医用支撑矫形鞋垫行业调研及趋势分析报告
- 2025-2030全球锂电电解铜箔行业调研及趋势分析报告
- 2025年全球及中国玻璃晶圆载体行业头部企业市场占有率及排名调研报告
- 2025年全球及中国PCB层压材料行业头部企业市场占有率及排名调研报告
- 二零二五版合伙人利润分成与权益约定协议范本3篇
- 2025年全球及中国正构甲基环己烷行业头部企业市场占有率及排名调研报告
- 2025-2030全球CD-SEM半导体量测设备行业调研及趋势分析报告
- 2024-2025学年重庆市北碚区三上数学期末监测试题含解析
- 大宗贸易居间协议2024年
- 第2课《济南的冬天》课件-2024-2025学年统编版语文七年级上册
- 2024年水利工程高级工程师理论考试题库(浓缩400题)
- 增强现实技术在艺术教育中的应用
- TD/T 1060-2021 自然资源分等定级通则(正式版)
- 《创伤失血性休克中国急诊专家共识(2023)》解读
- 仓库智能化建设方案
- 海外市场开拓计划
- 供应链组织架构与职能设置
- 幼儿数学益智图形连线题100题(含完整答案)
评论
0/150
提交评论