版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
/1.3《勾股定理的应用》同步练习1一、选择题1.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底墙到左墙角的距离为1.5m,顶端距离地面2m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面0.7m,那么小巷的宽度为()A.3.2m B.3.5m C.3.9m D.4m2.如图所示,一架梯子AB长2.5米,顶端A靠在墙AC上,此时梯子下端B与墙角C的距离为1.5米,当梯子滑动后停在DE的位置上,测得BD长为0.9米。则梯子顶端A沿墙下移了()米.A.1.4 B.1.2 C.1.3 D.1.53.我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是()A.x2+52=(x+1)2 B.x2+52=(x﹣1)2C.x2+(x+1)2=102 D.x2+(x﹣1)2=524.丽丽想知道学校旗杆的高度,她发现旗杆顶端上的绳子垂直到地面还多2米,当她把绳子下端拉开离旗杆6米后,发现下端刚好接触地面,则旗杆的高为()A.4米 B.8米 C.10米 D.12米5.有两棵树,一棵高6米,另一棵高3米,两树相距4米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了()米.A.3 B.4 C.5 D.66.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面处折断,树尖恰好碰到地面,经测量,则树高为().A. B. C. D.7.我国古代数学著作《九章算术》记载了一道有趣的问题,原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设水深为尺,根据题意,可列方程为()A. B.C. D.8.一帆船先向正西航行24千米,然后向正南航行10千米,这时它离出发点有()千米.A.26 B.18 C.13 D.329.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处.若M,N两点相距100海里,则∠NOF的度数为()A.50° B.60° C.70° D.90°10.如图,池塘边有两点A、B,点C是与BA方向成直角的AC方向上一点,测得CB=50m,AC=30m,则A、B两点间的距离是()A.20m B.40m C.20m D.50m11.一个三级台阶,它的每一级的长宽和高分别为、、,和是这个台阶两个相对的端点,点有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点最短路程为()A.21 B. C. D.二、填空题1.如图,一架10米长的梯子斜靠在竖直的墙上,这时为8米,如果梯子的底端外移2米到了处,则梯顶下滑的距离为_________米.2.如图,,,,一机器人在点B处看见一个小球从点A出发沿着方向匀速滚向点,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,则机器人行走的路程BC为__________.3.有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树__________米之处才是安全的.4.如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇生长在它的中央,高出水面的部分为1尺.如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶部恰好碰到岸边的,则这根芦苇的长度是______尺.5.如图,某港口P位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口P,各自沿固定方向航行,“远洋”号每小时航行12nmile,“长峰”号每小时航行16nmile,它们离开港东口1小时后,分别到达A,B两个位置,且AB=20nmile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是________.6.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B300m,结果他在水中实际游了500m,则该河流的宽度为_____.三、解答题1.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为500米,与公路上另一停靠站B的距离为1200米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径400米范围内不得进入.问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁?请通过计算进行说明.2.重庆八中渝北校区前的同茂大道的路有一座小山,因工程开发需要爆破.小山北偏东方向,距小山米的处是同茂大道中央公园东公交站;小山北偏西方向,距小山米的处是同茂大道上麗山公交站.(1)爆破时,在爆破点周围米范围有危险请问,为了安全,在爆破小山时需不需要暂时封闭同茂大道?请通过计算说明理由;(2)点是同茂大道上一点(点不与点重合),,区域是规划中的公园,问:这个公园占地多少平方米?3.如图,小明家在一条东西走向的公路北侧米的点处,小红家位于小明家北米(米)、东米(米)点处.(1)求小明家离小红家的距离;(2)现要在公路上的点处建一个快递驿站,使最小,请确定点的位置,并求的最小值.4.如图,在笔直的铁路上A,B两点相距20km,C,D为两村庄,DA=8km,CB=14km,DA⊥AB于点A,CB⊥AB于点B.现要在AB上建一个中转站E,使得C,D两村到E站的距离相等,求AE的长.一、选择题C.C.A.B.C.D.A.A.C.B.B.二、填空题1.2.2.5m.36.33.3.4.13.5.南偏东30°.43.400m6.400米.三、解答题58.没有危险,不需要暂时封锁1.解:公路AB段没有危险,不需要暂时封锁.
理由如下:如图,过C作CD⊥AB于D.∵CA⊥CB,
∴∠ACB=90°,
因为BC=1200米,AC=500米,
所以,根据勾股定理有AB==1300米,因为S△ABC=AB•CD=BC•AC,所以CD===米,由于400米<米,故没有危险,
因此AB段公路不需要暂时封锁.2.解:(1)在爆破小山时需不需要暂时封闭同茂大道BC;理由:由题意得,∠CAK=74°,∠BAK=16°,AB=600,AC=800,
∴∠CAB=90°,BC=1000米,
过A作AH⊥BC于H,
∴S△ABC=BC•AH=AC•AB,
∴AH==480米>400米,
∴在爆破小山时需不需要暂时封闭同茂大道BC;
(2)∵AD=AB,AH⊥BD,
∴BH=360,
∴CD=1000-2×360=280,
∴S△ACD=×280×480=67200m2,
答:这个公园占地67200平方米.60.(1)米;(2)见解析,米3.解:(1)如图,连接AB,由题意知AC=500,BC=1200,∠ACB=90°,在Rt△ABC中,∵∠ACB=90°,∴AB2=AC2+BC2=5002+12002=1690000,∵AB>0∴AB=1300米;(2)如图,作点A关于直线MN的对称点A',连接A'B交MN于点P.驿站到小明家和到小红家距离和的最小值即为A'B,由题意知AD=200米,A'C⊥MN,∴A'C=AC+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 19一只窝囊的大老虎 公开课一等奖创新教学设计
- 手术期前后护理
- 活动设计可行性分析
- 年产xx期刊印刷项目建议书
- 年产xxx橱柜大板项目可行性研究报告(投资方案)
- 型材门项目可行性研究报告
- 新建阳极电泳设备项目立项申请报告
- 断桥窗项目可行性研究报告
- 环式治疗骨延长
- 糖尿病管理与心血管疾病
- 商用储能电站项目可行性研究报告
- 咯血介入治疗护理查房
- MOOC 隔网的智慧-乒羽两项-西南交通大学 中国大学慕课答案
- 2023年1月自考00807金融概况试题及答案含解析
- 2024年1月电大国家开放大学期末考试试题及答案:机电控制工程基础
- 《船体结构与强度》课件
- 《露天矿山开采安全》课件
- 高新技术企业财务讲解
- 心肺复苏的护理关键与团队合作指南
- 周围神经病健康宣教
- 市政道路施工组织设计方案样本
评论
0/150
提交评论