IMF-小型开放经济体的综合货币和金融政策(英)-2023.8_第1页
IMF-小型开放经济体的综合货币和金融政策(英)-2023.8_第2页
IMF-小型开放经济体的综合货币和金融政策(英)-2023.8_第3页
IMF-小型开放经济体的综合货币和金融政策(英)-2023.8_第4页
IMF-小型开放经济体的综合货币和金融政策(英)-2023.8_第5页
已阅读5页,还剩147页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

wpl23l161IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.2023NArNR*Thefirstdraftofreconcilefindingsfromthisconceptualmodel,othecomments,wethankTobiStraub;wealsothankseminarparMacroeconomicsandtheMacroeConference,the2021AEAMeetings,tlaunchingtheIPFworkstreamandGiovanniDell'Aricc©2023InternationalMonetaryFundWP/23/161IMFWorkingPaperResearchDepartmentIntegratedMonetaryandFinancialPoliciesforSmallOpenEconomiesPreparedbySumanBasu,EmineBoz,GitaGopinath,FranciscoRoch,FilizUnsal*AuthorizedfordistributionbyPrachiMishraAugust2023IMFWorkingPapersdescriberesearchinprogressbytheauthor(s)andarepublishedtoelicitcommentsandtoencouragedebate.TheviewsexpressedinIMFWorkingPapersarethoseoftheauthor(s)anddonotnecessarilyrepresenttheviewsoftheIMF,itsExecutiveBoard,orIMFmanagement.ABSTRACT:Wedevelopatractablesmall-open-economyframeworktocharacterizetheconstrainedefficientuseofthepolicyrate,foreignexchange(FX)intervention,capitalcontrols,anddomesticmacroprudentialmeasures.Themodelfeaturesdominantcurrencypricing,shallowFXmarkets,andoccasionally-bindingexternalanddomesticborrowingconstraints.Wecharacterizetheconditionsforthe“traditionalprescription”—relyingonthepolicyrateandexchangerateflexibility—tobesufficient,evenifexternalitiespersist.TheconditionsaresatisfiedforworldinterestrateshocksifFXmarketsaredeep.Bycontrast,weshowthattomanagenon-fundamentalinflowsurgesandtapertantrumsrelatedtolocalcurrencydebt,capitalinflowtaxesandFXinterventionshouldbeusedinsteadofthepolicyrateandexchangerateflexibility.IntherealisticcasewherecountriesfacebothshallowFXmarketsandexternalborrowingconstraints,weestablishthatsomekindsofFXmismatchregulationsmayreducetheexternaldebtlimitfrictionbutworsenFXmarketdepth.Finally,weshowthatcapitalcontrolsanddomesticmacroprudentialmeasuresceasetobeperfectsubstitutesifthereisariskthatthedomesticborrowingconstraintbindsasaresultofthetransmissionoftheglobalfinancialcycle.JELClassificationNumbers:E58,F38,F41,G28Keywords:integratedpolicyframework;monetarypolicy;capitalcontrols;foreignexchangeintervention;macroprudentialpoliciesAuthor’sE-MailAddress:ilIMFWORKINGPAPERSINTERNATIONALMONETARYFUNDIntegratedMonetaryandFinancialPoliciesforSmallOpenEconomies1f 2f345678fE0〈Σ=0βtU(CHt,CFt,CRt,Nt)〉whereU(CHt,CFt,CRt,Nt)=αHlogCHt+αFlogCFt+(1-αH-αF)logCRt-Nt,WtNt+ΠTt+ΠBt+λΠFIt+ΠRt+Tt+DHHt+1HorxL.9>PHCHt+εtCFt+PRtCRt+(1+θHHt-1)(1+ρt-1)DHHt.HHt+1isYTt(j)=YHt(j)+YXt(j)=AtNt(j).YHt=(l01YHt(j)(ε-1)/εdj)ε/(ε-1)andYXt=(l01YXt(j)(ε-1)/εdj)ε/(ε-1).YHt=CHtandYXt=,t+1:Yt+1={G(k)forh=LinearEtIPRt+1Yt+1+qt+1k]-(1+θt)(1+ρt)qtk,Dear<κqq1k,k+k=1,Ynear+Yoncave=CRt.t+1,Dt+1=DHHt+1+Dr+Dave.ΠBt+1=(ρt-it)Dt+1,D2<κHPH,ft=it.Iftt|(1-ϕt)(1+it)-(1+i)!>Γ2,heyholdr=0).19heQt+1+Ft+1+Ot+1=Dt+1.Tt=φWtNt+ϕt-1(1+it-1)(Qt+Ft)+θHHt-1(1+ρt-1)DHHt+Ot[(1+it-1)-(1+i-1).quantities{CHt,CFt,CRt,Nt,k,k,YHt,YXt,Ynear,Yoncave,Qt+1,Dt+1}=0andt,ϕt,θHHt,θnear,FXIt}=0.20τHt=1+t=1-tt.t:τΓt+1=(1-λ)Et[[ηt+1-(1+i)],whereηt+1=(1-ϕt)(1+it).fτRt=I1-G/(1-kear)]fτXt=╱1-!+t=-tt,whereγ=PXXtdt、.VP={CFt,PH,st,η=[C*-CF0]+[C*-CF2]-(1-λ)FXI1[C*-CF2]-(1-λ)FXI1[η2-(1+i)]I0I1B1I0+[CF1-C*]+(1-λ)FXI0[η1-(1+i)]<κHforse{L,H}(3)Γ(B1+FXI0)=E0[η1-(1+i)](4)Γ(B2+FXI1-S1)=η2-(1+i)forse{L,H}(5) k-k t.*1*-1*-1fff3KeyTrade-OfsτH0=τH2=0.(8)Ht=εtCFt.herefore,forτH1=-z1-+ys1.(9)fBz1=Φ+ΨB+(1-λ)Γ(B2+FXI1)+ΓI0yη2!andz2=.(10)tαFβE0[I0z1]+β(1-λ)Γ(B1+FXI0)+yF0CF0==forte{1,2}.f(1-ϕ0)=βE0(η1(13)(1-ϕ1)=βη2.(14)ft+1}=0:(1-λ)+E0[z1{η1-(1+i)}]!+=0(15)(1-λ)|[η2-(1+i)]++Γyη2=0.(16) ∂kχ- ∂kττR2=-〉+╱k--∂arkìì ff{L,H};(1-λ)|ΓB1+E0[z1{η1-(1+i)}]!=0atFXI0=0τΓ2=(1-λ)Γ(B2-S1)foreachstate{L,H}-λ)Γ=-λ)Γ>0,(1+i0)=,(1+i1)=,andεt=forte{0,1,2}.{{τHt}=0,{τΓt}=1,{τRt}=1}=0;andXt=-C*.f(1+i0)=,(1+i1)=,andεt=forte{0,1,2}.ϕ0=1-βE0[η0],{{τHt}=0,τXt=-CFt.f-λ)Γfa.(1-λ)Γ=0b.(1-λ)Γ>0 Γ=0.Ht}=0,{τΓt}=1\=0;importsarestabilized,i.e.,=0,ϕ1=βΓS1};thet)==0and{εt}=0=.τHt=0forte{0,1,2}τΓ1=0andτΓ2=-ϕ0=0andϕ1=FXI0=-B1andFXI1=-B2(1+it)=forte{0,1},andεt=forte{0,1,2},whereB1=,B2=╱1+B1andCFt=CF=C*+B1forte{0,1,2}.Htt-λ)Γ(S1)2.10.50-0.5-110.50-0.5-14.3SignoftheExAnteC/ LH10.50-0.5-1 LH0.00050.0000-0.00051201201201210.50-0.5-110.50-0.5-1 10.50-0.5-1LLH0.01000.00500.0000-0.0050-0.010012012012012>B1>B2>B3=0,i.e.,{τRt}=1={θRt}=0={θHHt}=0=0.32=f ϕ=0.fa.(1-λ)Γ=0b.(1-λ)Γ>0hez1-τH1=-z1-τ1>0,τ1=0ifλ=1τ1:0,τ1>0ifλe[0,1).{τΓt}=1=0.βB1Cov(z1,η1)+Γ{β(B1)2E0z1+β2E0lz2(B2)2]}(25)ffX.}β1++1]->0.(26)λ.η<(1+i)<η.f!)>βπΓ\2+βπΓ╱B←2.π┌(1+i)-η!I+(1-λ)ΓB1ω1--η!+ΓB1!I+(1-λ)ΓB1>0zπ┌(1+i)-η!-z┌π┌(1+i)-η!+ΓB1!-ΓB1>0Γ{〈πIz+πIz+(1-λ)ΓB1>0(-2(1-λ)E0[z1η1]ìΓβB┌RB+2C2!ω2>0,E0[η1-(1+i)]=ΓB1>0andπ┌η-(1+i)!=π┌(1+i)-η!+ΓB1.<(1+i)is39he 01010101 01010101lΓ,=βB1Cov(z1,η1)+Γ{β(B1)2E0z1+β2E0lz2(B2)2]}+Γβ(B1)2+E0z1]+β2E0lz2(B2)2]},(32)t(1-ϕ0)=(1+θHH0)βE0|η1and(1-ϕ1)=(1+θHH1)βη2.(33){{τRt}=1,{θnear}=0}=0.{χ1=χ2=CF.χ1=(1+i0)=andχ2=(1+i1)=-2-βΓS1,θHH0=0andθHH1=2-βΓS1,2-βΓS12βCF2-βΓS1ff lχONLINEAPPENDIXA.1CompetitiveEquilibriumCHt=CFt,CCHt=CFt,CRt=CFt,andWt=εtCFtforte{0,1,2}αFPHαFPRtαF{PH((j);E0σtⅡTt(j)],j)=ⅡHt(j)+ⅡHt(j)=[PH(j)-(1+φ)YHt(j)andⅡXt(j)=[εtPX(j)-(1+φ)YXt(j),YHt(j)=YHt(εandYXt(j)=YXt(ε11PH=(l01PH(j)1(εdj)1-εandPX=(l01PX(j)1(εdj)1-ε.εE0βtYXt]ε-1E0βtYXt].=PXPH=0+β2E01+β+β20+β2E0+βE0+β2E0.αFαFCFt=Dt+1=!╱1+θt1th-RhtPMtforte{0,1}tisTPMt=θt(1(1+ρt(1)Dt,helinearifDnear<κqq1kifDnear=κqq1k.r=Et|(1-ϕt)(1+it)-(1+i)!.ⅡFIt+1=Qt+1|(1-ϕt)(1+it)-(1+i).A.2ConstrainedEfcientAllocationV╱CFt,,kear,At!=U╱CFt,CFt,kear+G╱1-kear←,t|CFt+!!『PXaxed,∂V∂CFt1+τHt!,∂、=αHτHt,and∂V∂kear =τRt∂kearX.χ=G′(kcave)E0[CF1]+E0[.it—1)÷εη=εη.Ft,PH,εt,ηt+1,FXIt,k},CHt=YHt=CFtandYXt=forte{0,1,2}Wt=εtCFtandNt=t[CFt+]forte{0,1,2}PX=PH0+β2E0PX=PH0+β2E0长ОО+βE0l长1F1]+β2E0l长22]ifwB=0ifwB>0ε2CF2β(1+θHH0)E0l]β(1+θHH1)ε1CF1χt+1=(1+ρt)forte{0,1}Yt+1={G)frhhe},wherek=1-kforte{0,1}CRt=YRt=Ynear+YoncaveandPRt=εtforte{0,1}↓,,,,(ε2CF2+q2]ift=0ift=1ift=2/kcQt+1+Ft+1+Ot+1=Dt+1forte{0,1,2}.i*1←B0+[CF0-C*]B2=B1I0+[CF1-C*]+(1-λ)FXI0[η1-(1+i)]<κHB3=0=B2I1+[CF2-C*]+(1-λ)FXI1[η2-(1+i)].乂乂乂乂in0RPYforR2d2{(τ1=+w{(εε1r--1R0〉+9sAεηforse{L,H},H=-1,9L=1←.heFOCfor{ηt+1}=0areasfollows:η:20=β(1-λ)(B1+FXI0)z+βy1+forse{L,H}η:2=(1-λ)●s+y2forse{L,H},↓|↓|y2=|||B1+FXI0)+β,(17)-(18).heFOCsfoFXI0:ΓΩ0=-β(1-λ)E0[z1{η1-(1+i)}]FXI:ΓΩ=-Φsforse{L,H}.E0βtαHτHt)-E0亚BκH!=0.y1y1=η-y1-forse{L,η-y1=(βy1=(β∂η╱kLinearL0R-κq∂η╱kLinearL0R-k、!fors=Ly1=|i1←Bnear-R0〉-χ)+βΓE0η1}y1=|-∂∂C2πforse{L,H}=∂∂C2πforse{L,H}=πforse{L,H}=={ ( χì =πE0y2=w|-κq)k-k、!fors=LG/k)αRY1αF{({(ììG/k)αRY1αF{({(ìì(χ)2Y2αFF2∂C1-1(χ)2Y2αFF2∂C1(χ)2Y2αFF2∂C2-1(χ)2Y2αFF2∂C2+G/k)-πC2-πC2forse{L,H}[(G//(k)]YR1G/k)[1(G/(k)](YR1)2 ì[(G// ìR2YsR2G/k)[1(G/(k)](Y2)2C2forse{L,H}∂C1 ∂==-C2forse{L,∂C1 ∂==-2forse{L,H} =-C2forse{L,H} =∂kar,s=G,rse{L,H} ∂1=-∂kαR[1-G′(k)]C1αF(YR1)2forse{L,H}.For{ϕteR,θHHt=0}andw=0:χ=βE0l]andχ=1forse{L,H}÷====0forse{L,H},whilefor{ϕt=0,θHHteR}andw=0:χ+1=η+1forte[0,1]andse{L,H}÷========0. C2.βC1{ε1,CF1,■ProofofLemma1(1-λ)[η2-(1+i)]=0,τH1=0 αFβE0[I0z1]+β(1-λ)E0[η1-(1+i)]z1CF0=1+τH0(1-ϕ0)=βE0lη1(1-λ)[E0[η1-(1+i)]z1+E0[z1{η1-(1+i)}]]20=β(1-λ)(B1+FXI0)z1.=zt=forte{1,2}.Ft}=0asfollows:=βE0[I0+β(1-λ)E0[η1-(1+i)]CF1=CF2.],FXI0)=0,E0[η1-(1+i)]=Ft}=0=C*andB1=B2=0.---FXI0)FXI0)=0.}=0=C*,whichinturn{η,η}},sot}=0(πA+πA)(πA+πA),(πA+πA)(πA+πA),t}=0=βC*,whichisRt}=1=0and{θnear,θnear}=0.■ProofofLemma2{{τHt}=0,{τΓt}=1,{τRt}=1}=0,{θnear,θnear}=0,andi)andi1,■ProofofLemma3-λ)r=0,inequationi1}FXI1=-B2,η2=-,andI1=-.=zt=forte{1,2}.)-η0]].{τHt}=0=0,t,it}=0ProofofCorollary1B2I1=[C*-CF2](B.14)whereB2=[CF0-C*]I0+[CF1-C*]+(1-λ)FXI0[η1-(1+i)]i)+(1-λ)η1i)+r(B2-S1)i)+(1-λ)r(B2-S1).-λ)r>0andS1 αFz1+yF1+η2了CF1=1+τH1 αFz2+yF2-了CF2=1+τH221=●(1-λ)+yη2+βCF1了,(1-λ)|[η2-(1+i)]++ryη2+βrCF1了=0.(B.19)F1,yF2,yη2}=0inS1CF1了(B2+FXI1)=whereB2=[CF0-C*]I0+[CF1-C*]+(1-λ)FXI0[η1-(1+i)]i)+(1-λ)η1i)+r(B2+FXI1-S1)i)+(1-λ)r(B2+FXI1-S1).i)+r(B2+FXI1-S1)]CF1.ProofofLemma4τ1π=π-Yandτ1π=Y(B.22)whereY=πη[z-=πη-z].(B.23)τH1=[z1CF1-αF].(B.24)τ1<τ1.<Y.[η-(1+i)]=[(1+i)-η]>0τ1=>0andτ1=0ϕ0=1-E0,where=.0=1-E0,>0.11ProofofLemma5dVPlannerdλ=E0(●(-[C*(CF2](IОI1)2-[C*(CF1](IО)2[1+i)-iwπ(I0)2E11+wπ(I0)2E11+i)-η1)-E0[r21B11+i)-η1)],ffε<εandη=<η=,C1=C*+-B1IandC2=C*-(1+i)ε1ε1i)C1=C*+(1+i)C*-B1I(1+i)i1←B0+CF0-C*η=(1+i)andI=(1+i)foτH0=τ2=0forse{L,H}αFLLLHHHCF0=βπ1αFLLLHHHαF=αF=,whereτ1=1-εC1forse{L,H}αFLαFHHαFLαFHHϕ0=1-+)ϕ=0andϕ=1-VPlanner=E0βtV╱CFt,εt,kear=1,At=A←).(-1β(C)2AXì-(-1β(C)2AXìdCF0=αFF0dλCF0)2IAXì-ηCF0)2IAXìdC1=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论