2018届高三下学期第一次模拟考试数学(理)试题(解析版)_第1页
2018届高三下学期第一次模拟考试数学(理)试题(解析版)_第2页
2018届高三下学期第一次模拟考试数学(理)试题(解析版)_第3页
2018届高三下学期第一次模拟考试数学(理)试题(解析版)_第4页
2018届高三下学期第一次模拟考试数学(理)试题(解析版)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2018届高三下学期第一次模拟考试

数学(理)试题(解析版)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则等于()A.B.C.D.【答案】D【解析】∵集合∴∵集合∴故选D.2.若,则等于()A.B.C.D.【答案】C【解析】试题分析:.考点:复数概念即运算.【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.3.下列函数中,既是偶函数,又是在区间上单调递减的函数为()A.B.C.D.【答案】B【解析】对于,函数是奇函数,不满足题意;对于,,函数是偶函数,在区间上,,函数单调递减,故满足题意;对于,函数是偶函数,在区间上,,函数单调递增,故不满足题意;对于,函数是偶函数,在区间上,不是单调函数,故不满足题意,故选B.4.执行如图所示的算法,则输出的结果是()A.B.C.D.【答案】D【解析】试题分析:,,;,,;,,,故输出.考点:程序框图.【方法点睛】本题主要考查程序框图的条件结构流程图,属于容易题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序.5.某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是()A.B.C.D.【答案】A【解析】该几何体为一个正方体去掉一个倒四棱锥,其中正方体棱长为,倒四棱锥顶点为正方体中心,底面为正方体上底面,因此体积是,选A.6.将函数的图象向右平移个单位,得到的图像关于原点对称,则的最小正值为()A.B.C.D.【答案】A【解析】分析:只要把的对称中心平移到原点,所得图象就关于原点对称.详解:的图象在轴左边最靠近原点的对称中心为,因此把图象向右最小平移个单位,就满足题意.故选A.点睛:的图象的对称中心是,对称轴方程为(),是奇函数,则原点是其一个对称中心,是偶函数,则轴是其一个对称轴.7.某赛季甲、乙两名篮球运动员各13场比赛得分情况用茎叶图表示如图:根据上图,对这两名运动员地成绩进行比较,下列四个结论中,不正确的是A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均值大于乙运动员的得分平均值D.甲运动员的成绩比乙运动员的成绩稳定【答案】D【解析】分析:根据茎叶图提供的数据,分别计算极差、中位数、均值、方差可得结论.详解:由茎叶图甲极差为47-18=29,乙的极差是33-17=16,A正确;甲中位数是30,乙中位数是26,B正确;甲均值为,乙均值为25,C正确,那么只有D不正确,事实上,甲的方差大于乙的方差,应该是乙成绩稳定.故选D.点睛:茎叶图中间是茎,是十位数字,两边是叶,是个位数字,由此可写出所有数据,然后根据各数字特征计算比较即可.8.已知等比数列的各项都是正数,且,,成等差数列,()A.6B.7C.8D.9【答案】D【解析】分析:根据等比数列的定义,只要计算出公比即可.详解:∵成等差数列,∴,即,解得(-1舍去),∴,故选D.点睛:正整数满足,若数列是等差数列,则,若数列是等比数列,则,时也成立,此性质是等差数列(等比数列)的重要性质,解题时要注意应用.9.在中,内角,,的对边分别为,,,若的面积为,且,则()A.B.C.D.【答案】B【解析】分析:把用表示,再结合余弦定理可得.详解:∵,∴,∴,∴,∴,(∵舍去),∴,,故选B.点睛:解三角形问题,主要是确定选用什么公式:正弦定理、余弦定理、三角形的面积,一般可根据已知条件和要求的问题确定,象本题,右边要用到余弦定理,因此左边选择公式,这样才能达到迅速化简的目的.10.已知双曲线的左右焦点分别为,,为双曲线的中心,是双曲线的右支上的点,的内切圆的圆心为,且圆与轴相切于点,过作直线的垂线,垂足为,若为双曲线的离心率,则()A.B.C.D.与关系不确定【答案】C【解析】试题分析:,内切圆与x轴的切点是A,∵,由圆切线长定理有,设内切圆的圆心横坐标为x,则,即,∴,即A为右顶点,在中,由条件有,在中,有,∴.考点:双曲线的标准方程、向量的运算、圆切线长定理.11.如图,在中,、分别是、的中点,若(,),且点落在四边形内(含边界),则的取值范围是()A.B.C.D.【答案】C【解析】分析:利用平面向量的线性运算,得出满足的不等关系,再利用线性规划思想求解.详解:由题意,当在线段上时,,当点在线段上时,,∴当在四边形内(含边界)时,(*),又,作出不等式组(*)表示的可行域,如图,表示可行域内点与连线的斜率,由图形知,,即,∴,,故选C.点睛:在平面向量的线性运算中,如图,的范围可仿照直角坐标系得出,,类比于轴,直角坐标系中有四个象限,类比在()中也有四个象限,如第Ⅰ象限有,第Ⅱ象限有,第Ⅲ象限有,第Ⅳ象限有,也可类比得出其中的直线方程,二元一次不等式组表示的平面区域等等.12.在实数集中,我们定义的大小关系“”为全体实数排了一个“序”,类似的,我们这平面向量集合上也可以定义一个称为“序”的关系,记为“”.定义如下:对于任意两个向量,,当且仅当“”或“且”,按上述定义的关系“”,给出下列四个命题:①若,,,则;②若,,则;③若,则对于任意的,;④对于任意的向量,其中,若,则.其中正确的命题的个数为()A.4B.3C.2D.1【答案】B【解析】分析:按照新定义,对每一个命题进行判断.详解:①是正确的;②中,满足已知,则,只要有一个没有等号,则一定,若,则,都满足,正确;③∵,∴命题正确,④中若,则,但,错误,因此有①②③正确,故选B.点睛:新定义问题,关键是正确理解新概念,并掌握解决新概念下问题的方法,有一定的难度.本题中新概念关系“>”与向量的坐标之间的大小关系联系在一起,由实数大小关系的传递性可得新关系“>”的传递性,但向量的数量积与新关系“>”之间没有必然的联系,这可通过举反例说明.实际上举反例说明一个命题是错误的,是数学中一个常用的方法.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若的展开式中的系数是,则实数__________.【答案】-2【解析】的展开式的通项为,令,得,即,解得.14.已知直线过抛物线的焦点,且与的对称轴垂直,与交于、两点,,为的准线上一点,则的面积为__________.【答案】36【解析】分析:可由得出,从而可得抛物线方程,抛物线的准线方程,因此的边上的高易得.详解:不妨设抛物线方程为,,,∴准线方程为,到直线的距离为6,∴.故答案为36.点睛:过抛物线的焦点与对称轴垂直的弦是抛物线的通径,通径长为.15.已知的半衰期为5730年(是指经过5730年后,的残余量占原始量的一半).设的原始量为,经过年后的残余量为,残余量与原始量的关系如下:,其中表示经过的时间,为一个常数.现测得湖南长沙马王堆汉墓女尸出土时的残余量约占原始量约占原始量的.请你推断一下马王堆汉墓的大致年代为距今__________年.(已知)【答案】2292【解析】由题意可知,当时,,解得.现测得湖南长沙马王堆汉墓女尸出土时的残余量约占原始量的.所以,得,.16.已知(),且满足的整数共有个,()的最大值为,且,则实数的取值范围为__________.【答案】【解析】分析:首先判断出函数是偶函数,这样由得,可解得,其次还要注意时,是常数,这样,从而,即恒成立,利用导数求出的最大值即可.注意到,因此在上递减才能符合要求.详解:∵,∴是偶函数,又由绝对值性质知时,是增函数,所以由得,解得或,结合,可知也满足要求,所以,故.即在时恒成立.,且,可得当时,单调递减,符合题意;当时,,使得在单调递增,不合题意,舍去.故答案为.点睛:本题有两个知识点,一个函数方程,解函数方程的方法是确定函数的性质如单调性、奇偶性、周期性等,利用函数性质去,本题是利用偶函数的性质及单调性性质得出,当然还要注意在上函数为常数,否则会漏解;二是不等式恒成立问题,也就量用导数求函数最值问题,此题中要掌握复合函数的求导法则,同时本题判断导数的正负还用到了整体换元思想,二次函数的性质,这要求我们要熟练掌握这些知识并能灵活应用.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列,满足,,,.(1)求证:数列是等差数列,并求数列的通项公式;(2)令,求数列的前项和.【答案】(1)见解析;(2).【解析】分析:(1)只要证得是常数即可,为此由已知得,代入,变形可证,从而得得的通项公式;(2)由(1)得,利用错位相减法可求和.详解:(1)∵,∴,由,∴,化简得,∵,∴,即(),而,∴数列是以1为首项,1为公差的等差数列.∴,即,∴().(2)由(1)知,,∴,∴,两式相减得,,故.点睛:解决数列求和问题首先要掌握等差数列和等比数列的前项和公式,其次要掌握一些特殊数列的求和方法,设是等差数列,是等比数列,则数列用分组求和法求和,数列用错位相减法求和,数列用裂项相消法求和.18.如图,是边长为3的正方形,平面,,且,.(1)试在线段上确定一点的位置,使得平面;(2)求二面角的余弦值.【答案】(1)见解析;(2).【解析】分析:(1)设平面ACF与BD交于点M,与BE交于点N,M点就量所求,由此可知M是BD的三等分点中靠近B点的一个,由线面平行的判定定理可证;(2)分别以DA,DC,DE为轴建立空间直角坐标系,写出各点坐标,求出平面ABE和平面CBE的法向量,由法向量的夹角可得所求二面角.详解:(1)证明:取的三等分点(靠近点),过作交于,则有,由平面,,可知平面,∴,∴,且.∴四边形为平行四边形,可知,∴平面,∵,∴为的一个三等分点(靠近点).(2)如图建立空间直角坐标系:则,,,,,,,设平面的法向量为,由可得.设平面的法向量为,由可得,因为二面角为钝二面角,可得,所以二面角余弦值为.点睛:立体几何中求空间角问题,除用几何法求解以外还可用空间向量法求解,建立空间直角坐标系,对直线求出直线的方向向量,对平面求出平面的法向量,则两直线方向向量的夹角与异面直线所成的角相等或互补,直线的方向向量与平面的法向量的夹角余弦和绝对值等于直线与平面所成角的正弦,两平面的法向量的夹角与二面角相等或互补,具体地可根据图形进行判断.19.为了引导居民合理用水,某市决定全面实施阶梯水价.阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:阶梯级别第一阶梯水量第二阶梯水量第三阶梯水量月用水量范围(单位:立方米)从本市随机抽取了10户家庭,统计了同一月份的月用水量,得到如图茎叶图:(1)现要在这10户家庭中任意选取3家,求取到第二阶梯水量的户数的分布列与数学期望;(2)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到户月用水量为二阶的可能性最大,求的值.【答案】(1)见解析;(2)6.【解析】分析:(1)由茎叶图可知抽取的10户中用水量为一阶的有2户,二阶的有6户,三阶的有2户.第二阶段水量的户数的可能取值为0,1,2,3,由超几何分布概率公式计算出概率,得概率分布列,再由期望公式可计算出期望;(2)设为从全市抽取的10户中用水量为二阶的家庭户数,依题意得,由二项分布概率公式计算出,比较它们的大小求得最大值(可用作商法:即,和可得值,即.........................详解:(1)由茎叶图可知抽取的10户中用水量为一阶的有2户,二阶的有6户,三阶的有2户.第二阶段水量的户数的可能取值为0,1,2,3,,,,,所以的分布列为0123.(2)设为从全市抽取的10户中用水量为二阶的家庭户数,依题意得,所以,其中0,1,2,…,10.设,若,则,;若,则,.所以当或,可能最大,,所以的取值为.点睛:本题主要要分清概率分布的类型,然后选用不同的公式计算概率,超几何分布与二项分布是两个重要的概率分布,超几何分布是统计学上一种离散概率分布.它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的次数(不归还);二项分布即在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变.20.已知,是椭圆的左、右焦点,点在椭圆上,线段与轴的交点满足.(1)求椭圆的标准方程;(2)过点作不与轴重合的直线,设与圆相交于,两点,与椭圆相交于,两点,当且时,求的面积的取值范围.【答案】(1);(2).【解析】分析:(1)由知是中点,从而得轴,因此得,再把点坐标代入椭圆方程再结合可解得得椭圆方程;(2)设直线的方程为,,,代入圆方程可得,计算,由可解得,设,把代入椭圆方程可得,由计算出面积,最后根据的范围得面积的范围.详解:(1)∵,则为线段的中点,∴是的中位线,又,∴,于是,且,解得,,∴椭圆的标准方程为.(2)由(1)知,,由题意,设直线的方程为,,,由得,则,..∵,∴,解得.由消得,设,,则.设,则,其中,∵关于在上为减函数,∴,即的面积的取值范围为.点睛:直线与椭圆相交问题,常常设交点坐标为,设直线方程,由直线方程与椭圆方程联立,消元后用韦达定理得,然后再求得弦长、斜率、面积等,并代入,从而把弦长、斜率、面积表示为参数(如)的函数,利用函数的知识可求得最值、范围或者证明其为定值.21.已知函数,其中是自然对数的底数.(1)若关于的不等式在上恒成立,求实数的取值范围;(2)已知正数满足:存在,使得成立.试比较与的大小,并证明你的结论.【答案】(1);(2)见解析.【解析】分析:(1)设,不等式可化为,对可把作为一个整体,分子分母同除以,转化后可利用基本不等式求得其最值,从而得的范围;(2)令函数,则,由导数可求得的最小值,而题中命题成立,即这个最小值,从而可得的取值范围,而比较与,即比较与的大小,即比较与的大小.于是可构造函数(),利用导数得出其单调性,从而得结论.详解:(1)由条件知在上恒成立,令(),则,所以对于任意成立.因为,∴,当且仅当,即时等号成立.因此实数的取值范围是.(2)令函数,则,当时,,,又,故,所以是上的单调递增函数,因此在上的最小值是.由于存在,使成立,当且仅当最小值,故,即.与均为正数,同取自然底数的对数,即比较与的大小,试比较与的大小.构造函数(),则,再设,,从而在上单调递减,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论